K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

\(\Delta=b^2-4ac=4m^2+4m+1-4m-8=4m-7\)

để pt có 2 nghiệm thì \(\Delta\ge0\) hay \(4m-7\ge0\Rightarrow m\ge\frac{7}{4}\)

áp dụng viet \(\int^{x_1+x_2=2m+1}_{x_1.x_2=m^2+2}\)

thế số vô tính

29 tháng 3 2016

pt có 2 nghiệm khi \(\Delta>0\),

24 tháng 4 2021

a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)

                    \(=9-m\)

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\)

\(\Rightarrow 9-m>0\)

\(\Leftrightarrow m<9\)

Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt

b)Theo định lí Vi-ét ta có:

\(x_1.x_2=\frac{-m}{1}=-m(1)\)

\(x_1+x_2=\frac{-6}{1}=-6\)

Lại có \(x_1=2x_2\)

\(\Rightarrow3x_2=-6\)

\(\Leftrightarrow x_2=-2\)

\(\Rightarrow x_1=-4\)

Thay x1;x2 vào (1) ta được 

\(8=m\)

Vậy m-8 thì x1=2x2

 

 

24 tháng 4 2021

Ở trên có đoạn mình đánh lộn  \(\Delta'\) ra \(\Delta\) nhé

9 tháng 1 2016

dùng hệ thức vi ét để biến đổi a/A= -3m^2 +2m +32=-3(m^2-2/3.m-32/3)=-3(m-1/3)^2-95/3 <= -95/3

                                            b/B=(2m+8)^2-3(m^2-8) rồi làm tương tự

 

15 tháng 6 2015

\(\Delta=25-4m\)pt có 2 nghiệm <=> \(\Delta\ge0\Leftrightarrow25-4m\ge0\Leftrightarrow m\le\frac{25}{4}\)

áp dụng hệ thức vi ét ta có: \(x1+x2=5\) (1) ; \(x1.x2=m\)(2)

|x1-x2|=3 

th1: x1-x2=3 <=> x1=3+x2 =>thế vào (1):  x2+3+x2=5 <=> 2x2=2 <=> x2=1 =>x1=1+3=4 => x1.x2=m=1.4 => m=4(t/m đk)

th2: x1-x2=-3 <=> x1=-3+x2 => x2-3+x2=5 <=> x2=4 => x1=1 => m=1.4=4 (t/m đk)

=> pt có 2 nghiệm... <=> m=4

15 tháng 1 2016

Để pt có hai nghiệm phân biệt âm cần :

m khác 1 

\(\Delta'=\left(m-1\right)^2-\left(m-1\right)m>0\)

\(x1+x2=\frac{-2\left(m-1\right)}{m-1}<0\left(luônđúng\right)\)

\(x1\cdot x2=\frac{-m}{\left(m-1\right)}<0\)

15 tháng 1 2016

đê pt có 2 nghiệm đều âm thì

s<0 và p>0

-2(m-1)/(m-2)<0<=>hai trường hợp

th1: m<1;m<2=>m<1 và -m/(m+1)>0<=>2 trường hợp

             .m<0;m>-1<=>-1<m<0

             .m>0;m<-1<=>m<-1 hoặc m>0

th2 tương tự

7 tháng 1 2016

giải  pt tìm  x1 ; x 2 theo m

sau đó giải BPT tìm m  thối.x1>1 và x2 < 6

7 tháng 1 2016

denta= (2m-3)^2 -4(m^2-3m)=9>0 => pt luôn có 2 nghiệm phân biệt với mọi x 
*x1=[2m-3+9]/2=m+3 
*x2=[2m-3-9]/2=m-6 
Theo bài ra ta có: hai nghiệm x1, x2 cùng dương <=> P>0 và S>0 
=> m>3 thì hai nghiệm x1, x2 luôn cùng dương.

6 tháng 2 2020

chả biết nx, sao t giải nháp nhanh nó tìm ra m nhưng ko thoả đk, chắc sai r

7 tháng 2 2020

\(\left(m+1\right)x^2-2\left(m-1\right)x+m-2=0\) (*)

ta có: \(\Delta'=b'^2-ac\)

\(=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)\)

=\(m^2-2m+1-m^2+m+2=3-m\)

để phương trình có nghiệm thì: \(\Delta'\ge0\Leftrightarrow m\le3\)

theo hệ thức vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}\\x_1.x_2=\frac{c}{a}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m-1\right)}{m+1}\left(1\right)\\x_1.x_2=\frac{m-2}{m+1}\left(2\right)\end{matrix}\right.\)

theo bài ra ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow\frac{x_1+x_2}{x_1.x_2}=\frac{7}{4}\)

\(\Leftrightarrow4.\left(x_1+x_2\right)=7.x_1.x_2\left(3\right)\)

từ (1) ;(2) và (3) ta có : \(\frac{8\left(m-1\right)}{m+1}-\frac{7\left(m-2\right)}{m+1}=0\)

\(\Leftrightarrow\frac{m+6}{m+1}=0\Leftrightarrow m=-6\left(tm\right)\)

vì m+1 khác 0

vậy m=-6