Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng định lý Ta-lét ta có:
\(\dfrac{AD}{DB}=\dfrac{AE}{EC}\Rightarrow\dfrac{4}{x}=\dfrac{5}{10}\Rightarrow x=4:\dfrac{1}{2}\Rightarrow x=8\)
Áp dụng hệ quả định lý Ta-lét ta có:
\(\dfrac{AE}{AC}=\dfrac{DE}{BC}\Rightarrow\dfrac{5}{15}=\dfrac{6}{y}\Rightarrow y=6:\dfrac{1}{3}\Rightarrow y=18\)
b, Áp dụng định lý phân giác ta có:
\(\dfrac{DB}{DC}=\dfrac{AB}{AC}\Rightarrow\dfrac{5}{6}=\dfrac{10}{x}\Rightarrow x=10:\dfrac{5}{6}\Rightarrow x=12\)
c: \(\left(x^2-2x\right)\left(x^2-2x-1\right)-12\)
\(=\left(x^2-2x\right)^2-\left(x^2-2x\right)-12\)
\(=\left(x^2-2x\right)^2-4\left(x^2-2x\right)+3\left(x^2-2x\right)-12\)
\(=\left(x^2-2x-4\right)\left(x^2-2x+3\right)\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>AB/HB=AC/HA
=>AB*HA=HB*AC
b: AH=căn 5^2-3^2=4cm
BI là phân giác
=>HI/HB=IA/AB
=>HI/3=IA/5=(HI+IA)/(3+5)=0,5
=>HI=1,5cm; IA=1,5cm
#)Giải :
(Hình bạn tự vẽ nhé :v)
AB cắt CD tại K
Theo bổ đề hình thang \(\Rightarrow\) K,E,F thẳng hàng
Kẻ EN//AB ta được hình bình hàng ABEN
\(\Rightarrow\) BE = AN ; \(\widehat{A}=\widehat{ENF}\) (1)
Ta có : \(\widehat{A}+\widehat{D}=90^o\Rightarrow\widehat{AKD}=90^o\)
\(\Rightarrow\Delta AKD\) vuông tại K, đường trung tuyến KF
\(\Rightarrow\widehat{A}=\widehat{AKF}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{A}=\widehat{ENF}=\widehat{AKF}\) (3)
Lại có : \(\widehat{AKF}=\widehat{NEF}\left(NE//AB\right)\) (4)
Từ (3) và (4) \(\Rightarrow\widehat{ENF}=\widehat{NEF}\)
\(\Rightarrow\Delta ENF\) là tam giác cân
\(\Rightarrow FN=FE\) (cặp cạnh tương ứng bằng nhau) (5)
Mà \(FN=FA-NA=\frac{AD-BC}{2}\) (6)
Từ (5) và (6) \(\Rightarrow\) đpcm
bữa sau bạn nhớ giải thích nữa nha chớ mình không biết tại sao ra đáp án đó đâu
thank aj