Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (x + 1)2 + (x - 1)(x2 + x + 1) + (x - 1)3
= x2 + 2x + 1 + x3 - 1 + x3 - 3x2 + 3x - 1
= 2x3 - 2x2 + 5x + 1
2) (x - 2)2 + (2x + 1)2 + (x + 1)3
= x2 - 4x + 4 + 4x2 + 4x + 1 + x3 + 3x2 + 3x + 1
= x3 + 8x2 + 3x + 6
3) (x + 1)(x2 - x + 1) - (x - 3)2
= x3 + 1 - x2 + 6x - 9
= x3 - x2 + 6x - 8
4) (3x + 2)2 + (2x - 1)2 - (x + 3)2
= 9x2 + 12x + 4 + 4x2 - 4x + 1 - x2 - 6x - 9
= 12x2 + 2x - 4
1) đặt 2x+1 = a => \(a^4-3a^2+2=\left(a^2-1\right)\left(a^2-2\right)=\)\(\left(a-1\right)\left(a+1\right)\left(a-\sqrt{2}\right)\left(a+\sqrt{2}\right)\)
=(2x+1-1)(2x+1+1)(2x+1-\(\sqrt{2}\))(2x+1+\(\sqrt{2}\)) = 4x(x+1)(2x+1-\(\sqrt{2}\))(2x+1+\(\sqrt{2}\))
2) =(x2-x)(x2-x-2)-3
đặt x2-x = b => b(b-2)-3 = b2-2b-3 = (b+1)(b-3) = (x2-x+1)(x2-x-3)
3) đặt x2+2x-1 = c => c2-3xc+2x2 = (c-x)(c-2x) = (x2+2x-1-x)(x2+2x-1-2x) = (x2+x-1)(x2-1) = (x2+x-1)(x-1)(x+1)
tìm x
x3-8 +(x-2)(x+1)=0 <=> (x-2)(x2+2x+4)+(x-2)(x+1)=0 <=>(x-2)(x2+2x+4+x+1)=0 <=> x=2 (vì x2+3x+5= (x+\(\frac{3}{2}\))2 +\(\frac{11}{4}\)>0)
vậy x=2
2) \(x\left(x-1\right)\left(x+1\right)\left(x-2\right)-3\)
\(=\left(x^2-x\right)\left(x^2-x-2\right)-3\)(1)
Đặt \(x^2-x=t\)
\(\Rightarrow\left(1\right)=t\left(t-2\right)-3=t^2-2t+1-4\)
\(=\left(t-1\right)^2-4\)
\(=\left(t+3\right)\left(t-5\right)\)
Thay \(x^2-x=t\), ta được:
\(BTDNT=\left(x^2-x+3\right)\left(x^2-x-5\right)\)
a) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x\left(x^2-5x+1\right)-2\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x^3-5x^2+x-2x^2+10x-2-x^3-11x\)
\(=-7x^2-2\)
b) \(\left(x-1\right)\left(x^2+x+1\right)+x^3-2\)
\(=x\left(x^2+x+1\right)-1\left(x^2+x+1\right)+x^3-2\)
\(=x^3+x^2+x-x^2-x-1+x^3-2\)
\(=2x^3-3\)
c) \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)
\(=x\left(x+y\right)-y\left(x+y\right)-2x\left(x-y\right)\)
\(=x^2+xy-yx-y^2-2x^2+2xy\)
\(=-x^2-y^2+2xy\)
a, \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x^3-7x^2+11x-2-x^3-11x=-7x^2-2\)
b, \(\left(x-1\right)\left(x^2+x+1\right)+\left(x^3-2\right)\)
\(=x^3-1+x^3-2=2x^3-3\)
c, \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)
\(=x^2-y^2-2x^2+2xy=-x^2-y^2+2xy\)
\(\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)
\(=\frac{x^3\left(x-1\right)-\left(x-1\right)}{x^4+x^3+x^2+2x^2+2x+2}\)
\(=\frac{\left(x-1\right)\left(x^3-1\right)}{x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)}\)
\(=\frac{\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2+2\right)}\)
\(=\frac{\left(x-1\right)^2}{\left(x^2+2\right)}\)
A = ( 2x + y )^2 - ( 2x-y ) ( 2x+y ) + y ( x - y )
A = 4x^2 + 4xy + y^2 - 4x^2 - y^2 + xy - y^2
A = 5xy - y^2
Thay x = -2 và y = 3 vào biểu thức ta có :
5 . ( -2 ) . 3 - 3^2
= -30 - 9
= -39
Vậy,...........
a) Ta có: \(\left(x-2\right).\left(x^2+2x+4\right)+\left(x-2\right)^3-\left(x-2\right).\left(x+2\right)\)
\(=\left(x^3-8\right)+\left(x-2\right)^3-\left(x^2-4\right)\)
\(=x^3-8+x^3-6x^2+12x-8-x^2+4\)
\(=2x^3-7x^2+12x-12\)
b) Ta có: \(\left(3-2x\right)^2-\left(x+3\right)^2-\left(2x+1\right)\left(2x-1\right)\)
\(=9-12x+4x^2-x^2-6x-9-4x^2+1\)
\(=3x^2-18x+1\)
\(=2x^3-7x^2+12x-12\)\(a.\left(x-2\right).\left(x^2+2x+4\right)+\left(x-2\right)^3-\left(x-2.\left(x+2\right)\right)\)
\(=\left(x^3-8\right)+\left(x-2\right)^3-\left(x^2-4\right)\)
~còn nữa~