K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2022

Vận tốc của chất điểm:

\(v\left(t\right)=s'\left(t\right)=3t^2-6t+9=3\left(t-1\right)^2+6\ge6\)

Dấu "=" xảy ra khi \(t-1=0\Rightarrow t=1s\)

15 tháng 4 2022

Dạ em cảm ơn rất nhiều ạ, nhưng nếu được thầy có thể giải thích giúp em làm sao ra đc :S'(t) ạ ?  

30 tháng 3 2022

13 . b ) SH \(\perp\left(ABCD\right)\Rightarrow SH\perp DI\) .

Dễ dàng c/m : DI \(\perp HC\) . Suy ra : \(DI\perp\left(SHC\right)\Rightarrow DI\perp SC\) ( đpcm ) 

Thấy : \(\left(SBC\right)\cap\left(ABCD\right)=BC\)

C/m : SB \(\perp BC\) . Thật vậy : \(BC\perp AB;BC\perp SH\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\)

Có : \(AB\perp BC\) nên : \(\left(\left(SBC\right);\left(ABCD\right)\right)=\left(SB;AB\right)=\widehat{SBA}=60^o\)

31 tháng 3 2022

Mình cảm ơn bạn nhiều lắm nha!!!

9b: 

Kẻ OK vuông góc SA tại K

BD vuông góc AC

BD vuông góc SO

=>BD vuông góc (SAC)

=->BD vuông góc SA

mà OK vuông góc SA

nên SA vuông góc (BKD)

=>SA vuông góc BK; SA vuông góc KD

=>((SAB); (SAD))=(BK;KD)

ΔSAC vuông cân tại O nên OK=1/2SA=a/căn 3

ΔBKD cso KO=BO=OD=a/căn 3=1/2*BD

=>ΔBKD vuông tại K

=>góc BKD=90 độ

=>(SAB) vuông góc (SAD)

5 tháng 8 2023

à câu c ý

18 tháng 12 2022

Có: `-C_2021 ^0 +C_2021 ^1 -C_2021 ^2 +....+C_2021 ^2019-C_2021 ^2020 -C_2021 ^2021 =-1-1=-2`

Mà `C_2021 ^0 +C_2021 ^1 +C_2021 ^2 +....+C_2021 ^2019 +C_2021 ^2020 +C_2021 ^2021 =2^2021`

   `=>2(C_2021 ^1 + C_2021 ^3 +C_2021 ^5 +...+C_2021 ^2017 + C_2021 ^2019 )=-2+2^2021`

 `=>C_2021 ^1 + C_2021 ^3 +...+C_2021 ^2017 + C_2021 ^2019 =-1+2^2020`

1C

6D

18D

20A

24A

29A

35D

31B

25 tháng 8 2021

Câu 4: D

Câu 5 : D

Câu 6 : A

17 tháng 4 2022

\(y=\dfrac{sinx-cosx}{sinx+cosx}\Rightarrow y'=\dfrac{\left(sinx-cosx\right)'.\left(sinx+cosx\right)-\left(sinx+cosx\right)'.\left(sinx-cosx\right)}{\left(sinx+cosx\right)^2}\)

Dễ thấy : \(\left(sinx-cosx\right)'=cosx+sinx\)

\(\left(sinx+cosx\right)'=cosx-sinx\)

Suy ra : \(y'=\dfrac{\left(sinx+cosx\right)^2+\left(sinx-cosx\right)^2}{\left(sinx+cosx\right)^2}=\dfrac{2}{\left(sinx+cosx\right)^2}\)