Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta thấy ACB=50 độ
CBE=50 độ
Mà 2 góc này là 2 góc so le trong
=>a // b (đpcm)
b)Ta thấy:
AB ⊥ a mà a // b
=>AB ⊥ b (Từ vuông góc đến song song) (đpcm)
c)Ta có:
DBE+BED+BDE=180 độ (Tổng 3 góc trong tam giác)
=>BDE=180-DBE-BED=180-50-40=90 độ
Mà BDE+CDE=180 độ (2 góc kề bù)
=>CDE=180-BDE=180-90=90 độ
Vậy CDE=90 độ
34+25x=2960⇒25x=2960−34⇒25x=2960−3.1560⇒25x=29−4560⇒25x=−1660=−415⇒x=−415:25⇒x=−415.52⇒x=−23Vậyx=−23
Câu đầu kiểm tra lại thử,có sai gì không mà số lớn quá :v
b, Xét x < 1 . Ta có : 1 - x + 4 - x = 3x => x = 1 loại
Xét 1 \(\le\)x \(\le\)4 .Ta có : x - 1 + 4 - x = 3x => x = 1
Xét x > 4 . Ta có : x - 1 + x - 4 = 3x => x = -5 loại
Vậy x = 1
c, Vì |x + 1| \(\ge\)0 , |x + 4| \(\ge\)0 với mọi x nên 3x \(\ge\)0 hay \(x\ge\)0
Với x \(\ge\)0 ta có x + 1 + x + 4 = 3x => x = 5
Vậy x = 5
d, Vì vế trái |x\((x-5)\)| \(\ge\)0 với mọi x nên vế phải \(x\ge\)0
Vì x\(\ge\)0 nên ta có : x | x - 5| = x
Nếu x = 0 thì 0.|0 - 5| = 0 đúng
Nếu x \(\ne\)0 thì ta có |x - 5| = 1 <=> x - 5 = 1 hoặc x - 5 = -1
=> x = 6 hoặc x = 4
Vậy x = 0 , x = 6 , x = 4
Bài 5:
a, a \(\perp\) m; b \(\perp\) m ⇒ ⇒ a//b (Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)
b, \(\widehat{ABb}\) = \(\widehat{aAn}\) = 1300 (hai góc đồng vị)
\(\widehat{Fan}\) = 1800 - 1300 = 500
Bài 4:
a: Đặt \(A=\dfrac{1}{2}x^2\left(-2x^2y^2z\right)\cdot\dfrac{-1}{3}x^2y^3\)
\(=\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot y^5z\)
\(=-\dfrac{1}{3}x^6y^5z\)
bậc là 6+5+1=12
Thay x=-1/2 và y=2 vào A, ta được:
\(A=-\dfrac{1}{3}\cdot\left(-\dfrac{1}{2}\right)^6\cdot2^5\cdot z=-\dfrac{1}{3}z\cdot\dfrac{1}{2}=-\dfrac{1}{6}z\)
b: Đặt \(B=\left(-x^2y\right)^3\cdot\dfrac{1}{2}x^2y^3\cdot\left(-2xy^2z\right)^2\)
\(=-x^6y^3\cdot\dfrac{1}{2}x^2y^3\cdot4x^2y^4z^2\)
\(=-2x^{10}y^{10}z^2\)
Bậc là 10+10+2=22
Thay x=-1/2 và y=2 vào B, ta được:
\(B=-2\cdot\left(-\dfrac{1}{2}\right)^{10}\cdot2^{10}\cdot z^2=-2z^2\)
c: Đặt \(C=\left(-6x^3yz\right)\cdot\left(\dfrac{2}{3}x^2y\right)^2\)
\(=-6x^3yz\cdot\dfrac{4}{9}x^4y^2\)
\(=-\dfrac{8}{3}x^7y^3z\)
bậc là 7+3+1=11
Thay x=-1/2 và y=2 vào C, ta được:
\(C=-\dfrac{8}{3}\cdot\left(-\dfrac{1}{2}\right)^7\cdot2^3\cdot z=\dfrac{1}{6}z\)
\(\frac{4}{3}-\left(x-\frac{1}{5}\right)=\left|\frac{-3}{10}+\frac{1}{2}\right|-\frac{1}{6}\)
\(\frac{4}{3}-\left(x-\frac{1}{5}\right)=\frac{1}{5}-\frac{1}{6}\)
\(\frac{4}{3}-\left(x-\frac{1}{5}\right)=\frac{1}{30}\)
\(x-\frac{1}{5}=\frac{4}{3}-\frac{1}{30}\)
\(x-\frac{1}{5}=\frac{13}{10}\)
\(x=\frac{13}{10}+\frac{1}{5}\)
\(x=\frac{3}{2}\)
Ta có:
\(\frac{5}{1\cdot7}+\frac{5}{7\cdot13}+\frac{5}{13\cdot19}+...+\frac{5}{91\cdot97}\)
= \(5\cdot\frac{1}{6}\cdot\left(\frac{6}{1\cdot7}+\frac{6}{7\cdot13}+\frac{6}{13\cdot19}+...+\frac{6}{91\cdot97}\right)\)
= \(\frac{5}{6}\cdot\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+...+\frac{1}{91}-\frac{1}{97}\right)\)
= \(\frac{5}{6}\cdot\left(1-\frac{1}{97}\right)\)
= \(\frac{5}{6}\cdot\frac{96}{97}\)
= \(\frac{80}{97}\)
5/1.7 + 5/7.13 + 5/13.19 + ... + 5/91.97
= 5/6.(1 - 1/7 + 1/7 - 1/13 + 1/13 - 1/19 + ... + 1/91 - 1/97)
= 5/6.(1 - 1/97)
= 5/6.96/97
= 80/97
Qua C dựng đường thẳng t song song với By
⇒ Ct //A\(x\) Vì trong cùng một đường thẳng nếu hai đường thẳng cùng song song với đường thẳng thứ ba thì song song với nhau.
\(\widehat{ACt}\) + \(\widehat{CAx}\) = 1800 (hai góc trong cùng phía)
⇒ \(\widehat{ACt}\) = 1800 - 1400 = 400
\(\widehat{yBC}\) = \(\widehat{BCt}\) = 200 (hai góc se trong)
mặt khác ta có: \(\widehat{ACB}\) = \(\widehat{ACt}\) + \(\widehat{BCt}\)
⇒ \(\widehat{ACB}\) = 400 + 200
\(\widehat{ACB}\) = 600
Cô ơi cho em hỏi tại sao mình phải chứng minh Ct //Ax