K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2019

Đáp án : B

10 tháng 6 2019

Đáp án B

NV
30 tháng 3 2021

Toàn bộ nghiệm của 3 pt này đều là nghiệm thực, không có nghiệm phức nào

a. \(x^2-3x-2=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{17}}{2}\\x=\dfrac{3-\sqrt{17}}{2}\end{matrix}\right.\)

b. \(x^4-5x^2+6=0\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{2}\\x=\pm\sqrt{3}\end{matrix}\right.\)

c. \(-x^2+4x+5=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)

27 tháng 10 2018

Đáp án : C.

AH
Akai Haruma
Giáo viên
29 tháng 5 2021

Bài 1:

Vì $a\geq 1$ nên:

\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)

\(\geq 1+\sqrt{4}+0=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=1$

 

AH
Akai Haruma
Giáo viên
29 tháng 5 2021

Bài 2:
ĐKXĐ: x\geq -3$

Xét hàm:

\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)

\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)

Do đó $f(x)$ đồng biến trên TXĐ

\(\Rightarrow f(x)=0\) có nghiệm duy nhất

Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.

29 tháng 6 2018

Chọn A

Với x [3;5], 

Xét hàm số 

Bất phương trình 3x + 1  ≥  m(x-2) nghiệm đúng với mọi x  ∈ [3;5] khi và chỉ khi

b) Ta có: \(x^2-4x+20=0\)

\(\Leftrightarrow x^2-4x+4+16=0\)

\(\Leftrightarrow\left(x-2\right)^2+16=0\)(Vô lý)

Vậy: \(S=\varnothing\)

5 tháng 6 2017

Đáp án A