Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 0 < \(\alpha< \dfrac{\pi}{2}\Rightarrow cos\alpha>0\) \(\Rightarrow cos\alpha=\sqrt{1-\left(\dfrac{3}{4}\right)^2}=\dfrac{\sqrt{7}}{4}\)
\(\Rightarrow sin2\alpha=2sin\alpha.cos\alpha=2.\dfrac{3}{4}.\dfrac{\sqrt{7}}{4}=\dfrac{3\sqrt{7}}{8}\)
\(cos2\alpha=1-2sin^2\alpha=1-2.\left(\dfrac{3}{4}\right)^2=-\dfrac{1}{8}\)
Ta có : \(A=\dfrac{cot2\alpha}{tan2\alpha+sin2\alpha}=\dfrac{1}{sin2\alpha+\dfrac{sin^22\alpha}{cos2\alpha}}=\dfrac{1}{\dfrac{3\sqrt{7}}{8}+\dfrac{\dfrac{63}{64}}{-\dfrac{1}{8}}}=\dfrac{8}{-63+3\sqrt{7}}\)
Đặt \(A=5\cdot7^{2\left(n+1\right)}+2^{3n}=5\cdot49^{n+1}+8^n=5\left(41+8\right)^{n+1}+8^n\)
Áp dụng công thức nhị thức Newton, ta có:
\(\left(41+8\right)^{n+1}=41^{n+1}+\left(n+1\right)\cdot41^n\cdot8+\dfrac{n\left(n+1\right)}{2}\cdot41^{n-1}\cdot8^2+...+\left(n+1\right)\cdot41\cdot8^n+8^{n+1}\)
Vậy \(A=5\left[41^{n+1}+\left(n+1\right)\cdot41^n\cdot8+..+\left(n+1\right)\cdot41\cdot8^n+8^{n+1}\right]+8^n\)
\(\Rightarrow A=5\left[41^{n+1}\left(n+1\right)\cdot41^n\cdot8+...+\left(n+1\right)\cdot41\cdot8^n\right]+5\cdot8^{n+1}+8^n\)
Đặt \(B=41^{n+1}\left(n+1\right)\cdot41^n\cdot8+...+\left(n+1\right)\cdot41\cdot8^n\)
\(\Rightarrow B⋮41\)
Đặt \(C=5\cdot8^{n+1}+8^n=8^n\left(5\cdot8+1\right)=8^n\cdot41\)
\(\Rightarrow C⋮41\)
Mà \(A=B+C\Rightarrow A⋮41\)
\(\RightarrowĐPCM\)
a: \(\Leftrightarrow2\sqrt{x^2-3}=3\)
=>căn x^2-3=3/2
=>x^2-3=9/4
=>x^2=9/4+3=21/4
=>\(x=\pm\dfrac{\sqrt{21}}{2}\)
b: =>3 căn 4-x^2=-1(loại)
c: =>x^2-2=3-x^2
=>2x^2=5
=>x^2=5/2
=>\(x=\pm\sqrt{\dfrac{5}{2}}\)
TH1: 1,2 đứng đầu
=>Có \(2\cdot2\cdot4=16\left(cách\right)\)
TH2: 1,2 đứng giữa
Nếu số 0 đứng cuối thì có \(2\cdot1\cdot4=8\left(cách\right)\)
Nếu số 8 đứng cuối thì có \(2\cdot1\cdot3=6\left(cách\right)\)
=>Có 14 cách
TH3: 1,2 đứng cuối
=>Có \(1\cdot4\cdot3=12\left(cách\right)\)
=>Có 16+14+12=42 cách