Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2y^3}+y\sqrt{x^4y}-xy\sqrt{y}\)
\(=xy\sqrt{y}+x^2y\sqrt{y}-xy\sqrt{y}\)
\(=x^2y\sqrt{y}\)
gọi chiều rộng của hình chữ nhật là a(0<a<1005)
=>chiều dài của hình chữ nhật là 1005-a
theo đề bài ta có pt:
a(1005-a)+13300=(a+10)(1005-a+20)
<=>-a^2+1005a+13300=-a^2+1025a-10a+102...
<=>10a=3050
<=>a=305
=>rộng=305:dài=700
mình lớp 5 mong các bạn tích thật nhiều và luôn
Gọi chiều dài ban đầu hcn là x (0<x<2010)
Gọi chiều rộng ban đầu hcn là y (0<y<x)
=>diện tích hcn ban đầu là: xy (cm2)
do hcn ban đầu có chu vi =2010cm nên ta có pt:
2(x+y)=2010 <=> x+y=1005 (1)
Khi tăng chiều dài thêm 20cm thì chiều dài mới là: (x+20) cm
và tăng chiều rộng thêm 10cm thì chiều rộng mới là (y+10) cm
Do đó diện tích hcn ban đâu tăng lên 13300 cm2
=>ta có pt: ( x+20)(y+10)=xy+13300 <=> x+2y=1310 (2)
từ (1)và (2) ta có hệ:
x+y=1005
x+2y=1310
Giải hệ pt ta đc: x=700; y=305
Vậy chiều dài ban đầu của hcn là 700 cm
chiều rộng ban đầu là 305 cm
A = \(\dfrac{4\sqrt{x}+9}{2\sqrt{x}+1}\)
Mà \(4\sqrt{x}+9>0\)
\(2\sqrt{x}+1>0\)
=> A > 0
A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}\) = \(2+\dfrac{7}{2\sqrt{x}+1}\)
Mà \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)
<=> \(A\le9\)
<=> 0 < A \(\le9\)
Mà A thuộc Z
<=> A \(\in\){1;2;3;4;5;6;7;8;9}
Đến đây bn thay A vào để tìm x nhé
A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}=2+\dfrac{7}{2\sqrt{x}+1}\)
Mà \(2\sqrt{x}+1>0< =>\dfrac{7}{2\sqrt{x}+1}>0\)
<=> A > 2
Có \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)
<=> \(A\le9\)
<=> 2 < A \(\le9\)
Mà A thuộc Z
<=> \(A\in\left\{3;4;5;6;7;8;9\right\}\)
Đến đây bn thay A vào để tìm x nhé
A = \(\dfrac{6\sqrt{x}+8}{3\sqrt{x}+2}=2+\dfrac{4}{3\sqrt{x}+2}\)
Có \(3\sqrt{x}+2>0< =>\dfrac{4}{3\sqrt{x}+2}>0\) <=> A > 2
Có: \(3\sqrt{x}+2\ge2< =>\dfrac{4}{3\sqrt{x}+2}\le2\) <=> A \(\le4\)
<=> 2 < A \(\le4\)
Mà A nguyên
<=> \(\left[{}\begin{matrix}A=3\\A=4\end{matrix}\right.\)
TH1: A = 3
<=> \(\dfrac{4}{3\sqrt{x}+2}=1\)
<=> \(3\sqrt{x}+2=4< =>x=\dfrac{4}{9}\)
TH2: A = 4
<=> \(\dfrac{4}{3\sqrt{x}+2}=2< =>3\sqrt{x}+2=2< =>x=0\)