K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2021

\(M=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2\cdot\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\\ M=\dfrac{\left(a-1\right)^2}{4a}\cdot\dfrac{-4\sqrt{a}}{a-1}=\dfrac{1-a}{\sqrt{a}}\)

8 tháng 12 2021

anh có thể ghi thêm các bước trước khi ra đc mấy cái này ko ạ tại rút gọn quá e ch hỉu ạ e c.ơn

31 tháng 5 2021
Bây h dùng pm hoidap247 rùi nhé
31 tháng 5 2021
Nhiều ngưòi on lắm
11 tháng 11 2023

loading...

a: Xét (O) có

ΔMAN nội tiếp

MN là đường kính

Do đó: ΔMAN vuông tại A

=>NA\(\perp\)IM

Xét (O) có

ΔNBM nội tiếp

NM là đường kính

Do đó: ΔNBM vuông tại B

=>MB\(\perp\)NI

b: Xét ΔIMN có

MB,NA là đường cao

MB cắt NA tại H

Do đó: H là trực tâm

=>IH\(\perp\)MN tại K

Xét tứ giác BHKN có

\(\widehat{HBN}+\widehat{HKN}=90^0+90^0=180^0\)

=>BHKN nội tiếp đường tròn đường kính HN

tâm F là trung điểm của HN

8 tháng 12 2021

\(a,B=4\sqrt{x+1}-3\sqrt{x+1}+\sqrt{x+1}+2\sqrt{x+1}=4\sqrt{x+1}\\ b,B=8\Leftrightarrow4\sqrt{x+1}=8\\ \Leftrightarrow\sqrt{x+1}=2\\ \Leftrightarrow x+1=4\\ \Leftrightarrow x=3\left(tm\right)\)

21 tháng 10 2021

Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{5\sqrt{x}+2}{x-4}\)

\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

20 tháng 10 2023

a: Xét ΔABC vuông tại A có \(cosB=\dfrac{AB}{BC}=\dfrac{1}{2}\)

nên \(\widehat{B}=60^0\)

b:

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=6^2-3^2=27\)

=>\(AC=3\sqrt{3}\left(cm\right)\)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{AD}{3}=\dfrac{CD}{6}\)

=>\(\dfrac{AD}{1}=\dfrac{CD}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{1}=\dfrac{CD}{2}=\dfrac{AD+CD}{1+2}=\dfrac{3\sqrt{3}}{3}=\sqrt{3}\)

=>\(\left\{{}\begin{matrix}AD=\sqrt{3}\simeq1,7\left(cm\right)\\CD=2\sqrt{3}\simeq3,5\left(cm\right)\end{matrix}\right.\)

c: ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot6=3\cdot3\sqrt{3}=9\sqrt{3}\)

=>\(AH=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

d: ΔABC vuông tại A có AH là đường cao

nên \(BA^2=BH\cdot BC\left(1\right)\)

ΔADB vuông tại A có AE là đường cao

nên \(BE\cdot BD=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BH\cdot BC=BE\cdot BD\)

=>\(\dfrac{BH}{BD}=\dfrac{BE}{BC}\)

Xét ΔBHE và ΔBDC có

BH/BD=BE/BC

\(\widehat{HBE}\) chung

Do đó: ΔBHE đồng dạng với ΔBDC

22 tháng 7 2023

bn gửi lại cho rõ hơn đi. chơ ảnh này mờ quá

30 tháng 9 2021

1)
\(=\left(6\sqrt{2}-5\sqrt{2}+3\sqrt{2}\right):\sqrt{2}=4\sqrt{2}:\sqrt{2}=4\)
2)
\(=16a-2a+5a=19a\)
3)
\(=\dfrac{2\left(2-\sqrt{3}\right)}{\left(2 +\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\dfrac{3\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(\sqrt{3}+2\right)}\)
\(=4-2\sqrt{3}-6-3\sqrt{3}=-2-5\sqrt{3}\)

 

30 tháng 9 2021

\(1,=\left(6\sqrt{2}-5\sqrt{2}+3\sqrt{2}\right):\sqrt{2}=4\sqrt{2}:\sqrt{2}=4\\ 2,=\left|4a\right|-2\left|a\right|+5a=4a-2a+5a=7a\left(a\ge0\right)\\ 3,=\dfrac{4-2\sqrt{3}-6-3\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\dfrac{-5\sqrt{3}-2}{4-3}=-5\sqrt{3}-2\\ 4,=\sqrt{\left(3-\sqrt{5}\right)^2\left(3+\sqrt{5}\right)}+\sqrt{\left(3+\sqrt{5}\right)^2\left(3-\sqrt{5}\right)}\\ =\sqrt{4\left(3-\sqrt{5}\right)}+\sqrt{4\left(3+\sqrt{5}\right)}\\ =2\sqrt{3-\sqrt{5}}+2\sqrt{3+\sqrt{5}}=2\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)\\ =2\left(\sqrt{\dfrac{6-2\sqrt{5}}{2}}+\sqrt{\dfrac{6+2\sqrt{5}}{2}}\right)\\ =2\left(\dfrac{\sqrt{5}-1}{\sqrt{2}}+\dfrac{\sqrt{5}+1}{\sqrt{2}}\right)\\ =2\cdot\dfrac{2\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)

22 tháng 10 2023

36B

37C

38D

39B

40D

41A

42B

43B

44A

45B

46B

47A

48C

50B

51B

52B

53D

54C

55D

56C