Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(MCD:R1nt\left(R2//R3\right)\)
\(=>R=R1+R23=R1+\dfrac{R2\cdot R3}{R2+R3}=18+\dfrac{20\cdot30}{20+30}=30\Omega\)
\(=>I=I1=I23=\dfrac{U}{R}=\dfrac{12}{30}=0,4A\)
Ta có: \(U23=U2=U3=U-U1=12-\left(0,4\cdot18\right)=4,8V\)
\(=>\left\{{}\begin{matrix}I2=\dfrac{U2}{R2}=\dfrac{4,8}{20}=0,24A\\I3=\dfrac{U3}{R3}=\dfrac{4,8}{30}=0,16A\end{matrix}\right.\)
a. Điện trở tương đương của đoạn mạch đó:
\(R_{tđ}=R_1+R_2+R_3=2+4+6=12\left(\Omega\right)\)
b. Cường độ dòng điện qua mạch là:
\(I=\dfrac{U}{R_{tđ}}=\dfrac{6}{12}=0,5\left(A\right)\)
Hiệu điện thế U3 giữa hai đầu điện trở R3 là:
\(U_3=IR_3=0,5.6=3\left(V\right)\)
Tóm tắt :
Biết : \(R_1=3\Omega\) ; \(R_2=5\Omega\) ; \(R_3=7\Omega\)
\(U=6V\)
Tính : a. \(R_{tđ}=?\)
b. \(U_1=?\) ; \(U_2=?\) ; \(U_3=?\)
Giải
a. Vì \(R_2\) nt \(R_2\) nt \(R_3\) nên điện trở tương đương của đoạn mạch là :
\(R_{tđ}=R_1+R_2+R_3=3+5+7=15\Omega\)
b. CĐDĐ qua mạch chính là :
\(I=\dfrac{U}{R}=\dfrac{6}{15}=0,4A\)
Do \(R_1\) nt \(R_2\) nt \(R_3\) nên :
\(I=I_1=I_2=I_3=0,4A\)
HĐT giữa hai đầu mỗi điện trở là :
\(U_1=I_1.R_1=0,4.3=1,2V\)
\(U_2=I_2.R_2=0,4.5=2V\)
\(U_3=I_3.R_3=0,4.7=2,8V\)
Đáp số : a. \(R_{tđ}=15\Omega\)
b. \(U_1=1,2V\) ; \(U_2=2V\) ; \(U_3=2,8V\)
1. a. Theo ht 4' trg đm //, ta có: Rtđ= (R1.R2)/(R1+R2)= (3.6)/(3+6)=2 ôm
b.Theo ĐL ôm, ta có: I= U/Rtđ=24/2=12 A
I1=U/R1=24/3=8 ôm
I2=U/R2=24/6=4 ôm
2. a. Theo ht 4' trg đm //, ta có: Rtđ=(R1.R2.R3)/(R1+R2+R3)= (6.12.4)/(6+12+4)=13,09 ôm
b. Áp dụng ĐL Ôm, ta có: U=I.R=3.13,09=39,27 V
c. Theo ĐL Ôm, ta có:
I1=U/R1=39,27/6=6.545 A
I2=U/R2=39,27/12=3,2725 A
I3=U/R3=39,27/4=9.8175 A