K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2019

Gọi quãng đường đội 1 làm trong một ngày là x (km), (0 < x < 4,5) thì quãng đường đội 2 làm trong một ngày là 4,5 - x.

Theo đề ra ta có phương trình:

\(\frac{10}{x}-\frac{10}{4,5-x}=1\Leftrightarrow x^2-24,5x+45=0\Leftrightarrow x=2\forall x=22,5\)(loại)

Vậy: Trong một ngày đội 1 làmđược 2 km, đội 2 làm được 2,5 km.

19 tháng 11 2023

 Trong 1 giờ, đội A làm được \(\dfrac{1}{12}\) đoạn đường, đội B được \(\dfrac{1}{15}\) đoạn đường, đội C được \(\dfrac{1}{17}\) đoạn đường còn đội D được \(\dfrac{1}{19}\) đoạn đường.

 Như vậy, trong 1 giờ, cả 4 đội cùng làm thì được \(\dfrac{1}{12}+\dfrac{1}{15}+\dfrac{1}{17}+\dfrac{1}{19}=\dfrac{1689}{6460}\) đoạn đường. Do đó, để hoàn thành đoạn đường thì cả 4 đội cùng làm một lúc hết \(\dfrac{6460}{1689}\) giờ. 

21 tháng 3 2021

Gọi tg đội là a,b(a,b>0)
1 ngày đội 1 làm đc: 1/a (đoạn đường)
1 ngày đội 2 làm đc: 1/b (đoạn đường)
Theo bài ra ta có:
1 ngày cả 2 đội làm đc: 1/45=1/45 (đoạn đường)
=> 1/a + 1/b=1/45 (1)
Đội 1 làm xong 1 nửa đoạn đường thì đội 2 làm nốt 1 nửa với thời gian nhiều hơn đội 1 là 28 ngày
=>.b/2 - a/2 = 28
=> b-a = 56 => b = a+ 56 (2)
Thay (2) vào (1) ta có:
1/a + 1/(a+56) = 1/45 (*)
Giải (*) ta đc: a=......
=> 1/b= 1/... - 1/.......=1/....
=>. b=........

Gọi thời gian làm một mình của đội 1;đội 2 lần lượt là a,b

Theo đề, ta có: 1/a+1/b=1/36 và 2/3:1*b-1/3:1/a=40

=>\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{36}\\-\dfrac{1}{3}\cdot a+\dfrac{2}{3}\cdot b=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a+2b=120\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{36}\end{matrix}\right.\)

=>a=2b-120 và \(\dfrac{1}{2b-120}+\dfrac{1}{b}=\dfrac{1}{36}\)

=>b+2b-120=1/36b(2b-120)

=>1/18b^2-10/3b-3b+120=0

=>1/18b^2-19/3b+120=0

=>b=90 hoặc b=24(loại)

=>a=2*90-120=180-120=60

21 tháng 5 2016

Gọi số ngày đội một làm riêng để hoàn thành đoạn đường là x (ngày) (x>0)

      số ngày đội hai làm riêng để hoàn thành đoạn đường là y (ngày) (y>0)

                                     (x>y)

=> Trong một ngày đội một làm một mình được \(\frac{1}{x}\)(công việc)

     Trong một ngày đội hai làm một mình được \(\frac{1}{y}\)(công việc)

Ta có hệ : \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{48}\\\frac{1}{2}x+\frac{1}{2}y=100\end{cases}}\)

Giải ra được x = 120 ; y = 80 (vì x>y)

Vậy : Nếu làm riêng thì đội một phải làm trong 120 ngày mới xong đoạn đường; đội hai phải làm trong 80 ngày mới xong đoạn đường

Gọi a(giờ) là thời gian đội 1 hoàn thành công việc khi làm riêng

Gọi b(giờ) là thời gian đội 2 hoàn thành công việc khi làm riêng

(Điều kiện: a>0; b>0)

Trong 1 giờ, đội 1 làm được: \(\dfrac{1}{a}\)(công việc)

Trong 1 giờ, đội 2 làm được: \(\dfrac{1}{b}\)(công việc)

Trong 1 giờ, hai đội làm được: \(\dfrac{1}{4}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{4}\)(1)

Vì khi đội 1 làm trong 2 giờ, sau đó đội 2 làm một mình trong 3 giờ thì họ hoàn thành được \(\dfrac{7}{12}\) công việc nên ta có phương trình:

\(\dfrac{2}{a}+\dfrac{3}{b}=\dfrac{7}{12}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{4}\\\dfrac{2}{a}+\dfrac{3}{b}=\dfrac{7}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{2}{b}=\dfrac{1}{2}\\\dfrac{2}{a}+\dfrac{3}{b}=\dfrac{7}{12}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-1}{b}=-\dfrac{1}{12}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=12\\\dfrac{1}{a}=\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=12\end{matrix}\right.\)(thỏa ĐK)

Vậy: Đội 1 cần 6 giờ để hoàn thành công việc khi làm một mình

Đội 2 cần 12 giờ để hoàn thành công việc khi làm một mình