Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo công thức ta có:
Sxq = 2πrh = 2√3 πr2
Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)
b) Vtrụ = πR2h = √3 π r3
c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.
Ta có là trung điểm của , = IJ.
Theo giả thiết = 300.
do vậy: AB1 = BB1.tan 300 = = r.
Xét tam giác vuông
AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .
Vậy khoảng cách giữa AB và O1O2 :
a, Diện tích của mặt cầu là: \(S_c=4\pi r^2\)
Diện tích xung quanh của mặt trụ là: \(S_t=2\pi rh=4\pi r^2\)
Vậy Sc = St
b, Thể tích của khối trụ là: \(V_t=\pi r^2h=2\pi r^2\)
Thể tích của khối cầu là: \(V_c=\dfrac{4}{3}\pi r^2\)
Vậy \(V_t=\dfrac{3}{2}V_c\)
Ta có công thức S xq = 2 π rl với r = 50 cm , l = 50 cm.
Do đó S xq = 2 π .50.50 = π .5000( cm 2 ) và V = π r 2 h = 125000. π ( cm 3 )
Đáp án B.
Phương pháp giải: Công thức tính thể tích khối trụ là V = πR 2 h
Lời giải: Công thức tính thể tích của khối trụ là V = πR 2 h .
Do khoảng cách hai đáy là nên chiều cao của hình trụ (đồng thời là độ dài đường sinh) là h = l = 7.
Diện tích xung quanh của hình trụ là:
Sxq = 2π.r.l = 2π.5.7 = 70π ( c m 2 ).
Thể tích của khối trụ được tạo nên là:
V = π r 2 .h = π. 5 2 .7 = 175π ( c m 3 )
Thể tích khôi trụ tạo nên bởi hình trụ đã cho là: