Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo bài tương tự tại đây nhé:
Câu hỏi của Nguyễn Lê Hoàng - Toán lớp 5 - Học toán với OnlineMath
Xét A là 1 người bất kỳ trong phòng
\(\Rightarrow\)A quen ít nhất người
Nếu ta mời những người không quen A ra ngoài thì số người ra nhiều nhất là
Trong phòng còn lại người. \(\Rightarrow\)gọi là 1 người quen \(\Rightarrow\) có nhiều nhất người B không quen trong phòng
\(\Rightarrow\) số nguời còn lại là \(\Rightarrow\)gọi là 1 người quen và \(\Rightarrow\) không quen nhiều nhất người trong phòng
\(\Rightarrow\)trong phòng còn lại 4 người \(\Rightarrow\)ngoài A,B,C còn 1 người giả sử là D,khi đó A,B,C,D đôi 1 quen nhau(đpcm)
Gọi A là hs có nhiều bạn quen nhất ở 1 trường khác.gọi số bạn này là k.
giả sử:A ở trường 1 và những bạn quen A là B1, B2..., Bk ở trường 2.Ta thấy có:k lớn hơn hoặc bằng (n + 1) / 2
Vì có ít nhất hs C ở trường 3 quen với A.giả sử C ko quen với B, ta có C quen với nhiều nhất n-k hs ở trường 2. suy ra C quen với ít nhất (n+1)-(n-k)=k+1 hs ở trường 1.
điều này mâu thuẫn với cách chọn A
Vậy C phải quen với 1 bạn nào đó
Ta có:A,B,C là 3 hs đôi một quen nhau
Gọi A là hs có nhiều bạn quen nhất ở 1 trường khác.gọi số bạn này là k.
giả sử:A ở trường 1 và những bạn quen A là $B_1$B1,$B_2$B2;...;$B_k$Bk ở trường 2.Ta thấy có:k lớn hơn hoặc bằng $\frac{n+1}{2}$n+12
Vì có ít nhất hs C ở trường 3 quen với A.giả sử C ko quen với B, ta có C quen với nhiều nhất n-k hs ở trường 2. suy ra C quen với ít nhất (n+1)-(n-k)=k+1 hs ở trường 1.
điều này mâu thuẫn với cách chọn A
Vậy C phải quen với 1 bạn nào đó
Ta có:A,B,C là 3 hs đôi một quen nhau
thiếu đề và sai đề
tam giác mak sao lại có 4 điểm??????
Gọi 3 đôi là C1,V1,C2,V2,C3,V3 .
Xét vị trí của C1,V1 : Có 2 khả năng : cách nhau một người ,và cách nhau 2 người (ngồi đối diện nhau) Khả năng 1 : ngồi đối xứng . Khi đó có 4 cách chọn người để đặt ngồi bên phải C1 . Sau khi chọn người đó rồi thì có 2 cách chọn người ngồi bên phải người đó (phải khác đôi) , sau khi chọn 2 người đó rồi thì có 2 cách xếp 2 người còn lại .
Như vậy là có 4x2x2=16 cách xếp mà có C1 ngồi đối diện V1 .
Trường hợp 2 : Là cách nhau một người . Khi đó : Có 2 cách xếp C1,V1 sao cho cách 1 ( người thứ 2 phía bên phải C1 là V1 hoặc ngược lại )
Rồi có 4 cách chọn người ngồi giữa C1 và V1 .Hai người cặp còn lại không được ngồi sát nhau , nên không được ngồi giữa chỗ 3 ghế còn lại , vậy nên chỗ đó là thuộc người cùng đôi với người ngồi kẹp giữa C1 và V1 .Còn 2 cách xếp 2 người còn lại . Tổng cộng có 2x4x2=16 cách.
Cộng lại được: (16+16) = 32 cách
Đáp số : 32 cách.
Chọn A là một học sinh trong hội nghị mời vào bàn. A có 50 người quen.
Chọn B và C là hai bạn không quen nhau trong nhóm này.
Nếu không thể chọn được B và C thì tất cả 50 người trong nhóm quen A đều quen nhau. Khi đó có thể lấy ba bạn bất kỳ xếp vào bàn với A, thỏa mãn điều kiện bài toán.
Trường hợp chọn được B và C, khi đó hội nghị có A, B quen A, C quen A ngồi ở bàn và 97 người khác. B còn 49 người quen khác A, C còn 49 người quen khác A, tổng cộng là 98>97. Như vậy B và C ít nhất có 1 người quen chung. Chọn D là một trong số người quen chung của B và C mời vào bàn. Ta có A,B,D,C thỏa mãn điều kiện bài toán.