Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 24 phút = \(\dfrac{2}{5}giờ\)
Gọi x là quãng đường AB (x>0)
Ta có: thời gian đi là: \(\dfrac{x}{50}\)(km/h)
thời gian về là: \(\dfrac{x}{50+10}=\dfrac{x}{60}\)(km/h)
Ta có: thời gian đi - \(\dfrac{2}{5}=thời\) gian về
\(\dfrac{x}{50}-\dfrac{2}{5}=\dfrac{x}{60}\\ < =>\dfrac{6x}{300}-\dfrac{120}{300}=\dfrac{5x}{300}\\ < =>6x-120=5x\\ < =>6x-5x=120\\ < =>x=120\left(km\right)\)
Vậy quãng đường AB dài 120km
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian người đó đi từ A đến B là:
\(\dfrac{x}{50}\left(h\right)\)
Thời gian người đó đi từ B về A là:
\(\dfrac{x}{50+10}=\dfrac{x}{60}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{50}-\dfrac{x}{60}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{6x}{300}-\dfrac{5x}{300}=\dfrac{120}{300}\)
Suy ra: 6x-5x=120
hay x=120(thỏa ĐK)
Vậy: AB=120km
Gọi độ dài quãng đường AB là x
Theo đề, ta có phương trình:
\(\dfrac{x}{50}-\dfrac{x}{60}=\dfrac{2}{5}\)
\(\Leftrightarrow x=120\)
Gọi độ dài quãng đường AB là x(km)(Điều kiện: x>0)
Vận tốc lúc về là: 10+2=12(km/h)
Thời gian đi từ A đến B là: \(\dfrac{x}{10}\left(h\right)\)
Thời gian đi từ B về A là: \(\dfrac{x}{12}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{10}-\dfrac{x}{12}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{6x}{60}-\dfrac{5x}{60}=\dfrac{45}{60}\)
Suy ra: x=45(thỏa ĐK)
Vậy: AB=45km
Gọi quãng đường AB là x ( x> 0 )
Theo bài ra ta có pt \(\frac{x}{25}-\frac{x}{30}=\frac{1}{3}\Rightarrow x=50\left(tm\right)\)
Gọi x là quãng đường AB(x>0, km)
Ta có vận tốc lúc về là: 40+5=45(km/h)
Đổi 15'=1/4 h
Vì lúc về ít hơn lúc đi là 1/4 h, ta có pt:
\(\dfrac{x}{14}-\dfrac{1}{4}=\dfrac{x}{45}\)
\(\dfrac{9x}{360}-\dfrac{90}{360}=\dfrac{8x}{360}\)
\(9x-8x=90\)
\(x=90\)
Vậy: Độ dài quãng đường AB là 90km
30 phút=\(\dfrac{1}{2}\)giờ
Gọi thời gian lúc đi là x(giờ; x>0)
Vì thời gian lúc đi ít hơn thời gian lúc về là 30 phút(\(\dfrac{1}{2}\)giờ)
=>Thời gian lúc về là:x+\(\dfrac{1}{2}\)(giờ)
Vận tốc của người đó lúc về nhỏ hơn vận tốc lúc đi là 6km/h
=>Vận tốc của người đó lúc về là:30-6=24(km/h)
Quãng đường lúc đi: 30x(km)
Quãng đường lúc về là: 24(x+\(\dfrac{1}{2}\))
Quãng đường đi được là không đổi nên ta có phương trình:
30x=24(x+\(\dfrac{1}{2}\))
\(\Leftrightarrow\)30x=24x+12
\(\Leftrightarrow\)30x-24x=12
\(\Leftrightarrow\)6x=12
\(\Leftrightarrow\)x=2(TMĐK)
Vậy quãng đường AB dài: 30.2=60km
Gọi độ dài quãng đường AB là x(km)(Điều kiện: x>0)
Thời gian người đó đi từ A đến B là: \(\dfrac{x}{45}\left(h\right)\)
Thời gian người đó đi từ B về A là: \(\dfrac{x}{50}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{45}-\dfrac{x}{50}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{10x}{450}-\dfrac{9x}{450}=\dfrac{180}{450}\)
\(\Leftrightarrow x=180\left(nhận\right)\)
Vậy: Độ dài quãng đường AB là 180km
Gọi Quãng đường AB là x ( x > 0, km )
Quãng đường khi về là x + 10 km
Thời gian người đó đi quãng đường AB là \(\frac{x}{25}\)giờ
Thời gian người đó đi quãng đường khi về là \(\frac{x+10}{30}\)giờ
Do thời gian về ít hơn thời gian đi là 20 phút = 1/3 giờ
nên ta có phương trình \(\frac{x}{25}-\frac{x+10}{30}=\frac{1}{3}\Leftrightarrow x=100\)
Vậy Quãng đường AB là 100 km
Gọi độ dài AB là x
Thời gian đi là x/50
Thời gian về là x/60
Theo đề, ta có: x/50-x/60=2/5
=>x/300=2/5
=>x=120
Gọi x là quãng đường AB (x > 0, x \(\in\) Z)
Thời gian người đi từ A \(\rightarrow\) B : \(\dfrac{x}{50}h\)
Thời gian người đi từ B \(\rightarrow\) A: \(\dfrac{x}{10}h\)
Vì thời gian lúc về ít hơn thời gian lúc đi là 24 phút = \(\dfrac{2}{5}h\)
Ta có pt:
\(\dfrac{x}{50}-\dfrac{x}{60}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{300}x=\dfrac{2}{5}\)
\(\Leftrightarrow x=120\)
Vậy quãng đường AB dài 120 km