Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là quãng đường AB(x>0, km)
Ta có vận tốc lúc về là: 40+5=45(km/h)
Đổi 15'=1/4 h
Vì lúc về ít hơn lúc đi là 1/4 h, ta có pt:
\(\dfrac{x}{14}-\dfrac{1}{4}=\dfrac{x}{45}\)
\(\dfrac{9x}{360}-\dfrac{90}{360}=\dfrac{8x}{360}\)
\(9x-8x=90\)
\(x=90\)
Vậy: Độ dài quãng đường AB là 90km
Gọi độ dài quãng đường AB là x
Thời gian đi là x/30(h)
Thời gian về là x/35(h)
Theo đề, ta có x/30-x/35=1/3
hay x=70
Vận tốc khi về là: 30+5=35(km/h)
Đổi 20'=\(\dfrac{1}{3}h\)
Gọi quãng đường a đến b là x (x>0)
Thời gian khi đi là \(\dfrac{x}{30}\left(h\right)\)
Thời gian khi về là \(\dfrac{x}{35}\left(h\right)\)
Theo bài ra ta có pt:
\(\dfrac{x}{30}=\dfrac{x}{35}+\dfrac{1}{2}\\
\Leftrightarrow\dfrac{7x}{210}-\dfrac{6x}{210}=\dfrac{105}{210}\\ \Leftrightarrow7x-6x=105\\
\Leftrightarrow x=105\left(tm\right)\)
Vậy quãng đường a đến b là 105km
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian xe máy đi từ A đến B là: \(\dfrac{x}{40}\left(h\right)\)
Thời gian xe máy đi từ B về A là: \(\dfrac{x}{45}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{40}-\dfrac{x}{45}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{9x}{360}-\dfrac{8x}{360}=\dfrac{90}{360}\)
\(\Leftrightarrow9x-8x=90\)
hay x=90(thỏa ĐK)
Vậy: Độ dài quãng đường AB là 90km
Gọi x là quãng đường AB(x>0, km)
Ta có vận tốc lúc về là: 40+5=45(km/h)
Đổi 15'=1/4 h
Vì lúc về ít hơn lúc đi là 1/4 h, ta có pt:
\(\dfrac{x}{40}-\dfrac{1}{4}=\dfrac{x}{45}\)
\(\dfrac{9x}{360}-\dfrac{90}{360}=\dfrac{8x}{360}\)
\(9x-8x=90\)
\(x=90\)(tmđk)
Vậy sAB là: 90km
Đổi \(30phút=\dfrac{1}{2}\left(h\right)\)
Gọi vận tốc dự định của xe máy là x (km/h; x > 0 )
Thì vận tốc đi nửa quãng đường còn lại là \(x+10\)
Nửa quãng đường là : \(\dfrac{1}{2}.120=60\left(km\right)\)
Thời gian xe dự định đi từ A đến B là \(\dfrac{120}{x}\left(h\right)\)
Thời gian xe đi được nửa quãng đường đầu là \(\dfrac{60}{x}\left(h\right)\)
Thời gian xe đi nửa quãng đường còn lại khi tăng thêm 10km/h là \(\dfrac{60}{x+10}\)
Vì tăng thêm 10km/h ở nửa sau quãng đường nên xe đến B sớm hơn \(\dfrac{1}{2}\left(h\right)\) so với dự định nên ta có phương trình.
\(\dfrac{60}{x}+\dfrac{60}{x+10}+\dfrac{1}{2}=\dfrac{120}{x}\)
\(\Leftrightarrow120\left(x+10\right)+120x+x\left(x+10\right)=240\left(x+10\right)\)
\(120x+1200+120x+x^2+10x=240x+2400\)
\(\Leftrightarrow x^2+120x+120x+10x-240x+1200-2400=0\)
\(\Leftrightarrow x^2+10x-1200=0\)
\(\Leftrightarrow x^2-30x+40x-1200=0\)
\(\Leftrightarrow x\left(x-30\right)+40\left(x-30\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-30\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+40=0\\x-30=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-40\left(loại\right)\\x=30\left(nhận\right)\end{matrix}\right.\)
Vậy vận tốc dự định của xe máy là 30km/h
Gọi vận tốc dự định của xe máy là x ( km/h x > 0 )
Thời gian xe máy dự định đi từ A đến B = 120/x ( giờ )
Vận tốc xe đi nửa quãng đường sau = x + 10 (km/h)
Thời gian xe máy đi nửa quãng đường đầu = 60/x ( giờ )
Thời gian xe máy đi nửa quãng đường sau = 60/(x+10) giờ )
Theo bài ra ta có phương trình : 60x+60x+10=120x−1260x+60x+10=120x−12
Giải phương trình thu được x = -40 ( loại ) ; x = 30 ( tm )
Vậy vận tốc dự định của xe máy là 30km/h
Gọi vận tốc dự định của xe máy là x ( km/h x > 0 )
Thời gian xe máy dự định đi từ A đến B = 120/x ( giờ )
Vận tốc xe đi nửa quãng đường sau = x + 10 (km/h)
Thời gian xe máy đi nửa quãng đường đầu = 60/x ( giờ )
Thời gian xe máy đi nửa quãng đường sau = 60/(x+10) giờ )
Theo bài ra ta có phương trình : \(\frac{60}{x}+\frac{60}{x+10}=\frac{120}{x}-\frac{1}{2}\)
Giải phương trình thu được x = -40 ( loại ) ; x = 30 ( tm )
Vậy vận tốc dự định của xe máy là 30km/h
Gọi x là v.tốc dự định của xe(x>0, km/h)
Nửa quãng đường xe đi là: 120:2=60(km)
=> Vận tốc đi nửa quãng đường là: \(\dfrac{60}{x}\) (km/h)
=> Thời gian đi dự định là: \(\dfrac{120}{x}\left(h\right)\)
Vì nửa qquangx đường sau xe đi với thời gian là: \(\dfrac{60}{x+10}\left(h\right)\)
Theo bra ta có:
\(\dfrac{60}{x}+\dfrac{60}{x+10}=\dfrac{120}{x}-0.5\)
Gải được x=40(tmđk)
Vậy v.tốc dự định là 40km/h
Gọi quãng đường AB là x(km) ( x>0 )
Thời gian đi là: \(\dfrac{x}{40}\left(h\right)\)
Thời gian về là:\(\dfrac{x}{10}\left(h\right)\)
3 giờ 30 phút = 7/2 giờ
Theo đề bài ta có pt:
\(\dfrac{x}{40}+\dfrac{x}{10}=\dfrac{7}{2}\)
\(\Leftrightarrow\dfrac{x+4x}{40}=\dfrac{140}{40}\)
\(\Leftrightarrow5x=140\)
\(\Leftrightarrow x=28\left(tm\right)\)
Vậy quãng đường AB dài 28km
Đổi 3 giờ 30 phút = 3,5 giờ
Gọi x (km) là quãng đường AB : (ĐK : x > 0)
Thời gian đi : \(\dfrac{x}{40}\left(h\right)\)
Thời gian về : \(\dfrac{x}{10}\left(h\right)\)
Vì thời gian về hết 3 giờ 30 phút nên ta có pt :
\(\dfrac{x}{40}+\dfrac{x}{10}=\dfrac{7}{2}\)
\(\Leftrightarrow x+4x=140\)
\(\Leftrightarrow5x=140\)
\(\Leftrightarrow x=28\left(N\right)\)
Gọi độ dài AB là x
Thời gian đi là x/30
Thời gian về là \(\dfrac{x+10}{25}\)
Theo đề, ta có: (x+10)/25-x/30=4/5
=>x/25-2/5-x/30=4/5
=>x/150=6/5
=>x=180
`->` gọi quãng đường `AB` là : `x(km;x>0)`
`-` quãng đường của xe máy lúc về là : `x+10(km)`
`-` thời gian của xe máy khi đi từ `A` đến `B` là : `x/30` (giờ)
`-` đổi `48` phút `=4/5` giờ
`=>` theo bài ra ta có được phương trình như sau :
`(x+10)/25-x/30=4/5`
`<=>6x -60+5x=120`
`<=>x=120-60`
`<=>x=60` (nhận)
Vậy quãng đường `AB` là `60km`
Gọi độ dài quãng đường AB là x (x>0)
Vận tốc khi về là:\(30+10=40\left(km/h\right)\)
Thời gian đi là \(\dfrac{x}{30}\)(h)
Thời gian về là \(\dfrac{x}{40}\)(h)
Theo bài ra ta có pt:
\(\dfrac{x}{30}+\dfrac{x}{40}=7\\ \Leftrightarrow\dfrac{4x}{120}+\dfrac{3x}{120}=\dfrac{840}{120}\\ \Leftrightarrow4x+3x=840\\ \Leftrightarrow7x=840\\ \Leftrightarrow x=120\left(km\right)\)
Gọi độ dài quãng đường AB là x
Thời gian đi là x/30(h)
Thời gian về là x/40(h)
Theo đề, ta có: x/30+x/40=7
hay x=120