K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

Đáp án B

Số cách xếp 10 học sinh vào 10 ghế là: 10!

4 bạn nữ chỉ có thể xếp vào các vị trí N1,N2,N3,N4

Nếu Huyền ở vị trí N1 thì có 3! cách xếp 3 bạn nữ còn lại

Quang có 5 cách chọn chỗ ngồi và có 5! cách xếp 5 bạn nam còn lại

Vậy có 3!.5.5! = 3600 cách xếp

Tương tự nếu Huyền ở vị trí N4 cũng có 3600 cách xếp

Nếu Huyền ở vị trí N2 thì có 3! cách xếp 3 bạn nữ còn lại

Quang có 4 cách chọn chỗ ngồi và có 5! cách xếp 5 bạn nam còn lại

Vậy có 3!.4.5! = 2880 cách xếp

Tương tự nếu Huyền ở vị trí N3 cũng có 2880 cách xếp

Vậy có 2(3600+2880) = 12960 cách xếp thỏa mãn đề bài

⇒ p = 12960 10 ! = 1 280

22 tháng 6 2018

Đáp án B

Kí hiệu 10 ghế như sau:  

Trong đó: D là ghế đỏ (dành cho nữ) và X là ghế xanh (dành cho nam)

+ Số cách xếp nữ vào ghế đỏ, nam vào ghế xanh là M = 4!6!

+ Số cách xếp sao cho Quang được ngồi cạnh Huyền (kí hiệu là N)

- Chọn 2 ghế liên tiếp khác màu: C 6 1 cách

- Xếp Quang và Huyền vào 2 ghế đó (1 cách) và xếp các bạn kia vào các ghế còn lại (3!5! cách)

=> N = 3!5!.6 => N = 3!.6!

+ Số cách xếp thỏa mãn điều kiện đề bài là M – N = 12960 cách

Xác suất cần tìm là  12960 10 ! = 1 280 .

19 tháng 9 2019

Chọn đáp án B.

15 tháng 7 2019

a) Xếp 6 nam vào 6 ghế cạnh nhau. Có 6! cách.

Giữa các bạn nam có 5 khoảng trống cùng hai đầu dãy, nên có 7 chỗ có thể đặt ghế cho nữ.

Bây giờ chọn 4 trong 7 vị trí để đặt ghế. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Xếp nữ vào 4 ghế đó. Có 4! cách.

Vậy có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách xếp mà không có hai bạn nữ nào ngồi cạnh nhau.

b) Xếp 6 ghế quanh bàn tròn rồi xếp nam vào ngồi. Có 5! cách.

Giữa hai nam có khoảng trống. Xếp 4 nữ vào 4 trong 6 khoảng trống đó. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Theo quy tắc nhân, có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

18 tháng 5 2017

Tổ hợp - xác suất

24 tháng 12 2019

Chọn D

Số phần tử của không gian mẫu: 

Gọi A là biến cố: “cặp sinh đôi ngồi cạnh nhau và nam nữ không ngồi đối diện nhau”.

Ta tính n() như sau:

Đánh số các ghế ngồi của 8 học sinh như hình vẽ sau:

- Để xếp cho cặp sinh đôi ngồi cạnh nhau có 6 cách.

- Mỗi cách như vậy có  cách đổi chỗ.

 

- Với mỗi cách xếp cặp sinh đôi, ví dụ: Cặp sinh đôi ở vị trí 1 và 2.

Do nam nữ không ngồi đối diện nên:

+ Vị trí 5 và 6 đều có 3 cách.

+ Vị trí 3 có 4 cách, vị trí 7 có 1 cách.

+ Vị trí 4 có 2 cách, vị trí 8 có 1 cách.

 

Suy ra n(A) = 6.2.3.3.4.1.2.1 = 864

23 tháng 7 2017

13 tháng 8 2018

Để xác định, các ghế được đánh số từ 1 đến 10 tính từ trái sang phải.

a) Nếu các bạn nam ngồi ở các ghế ghi số lẻ thì các bạn nữ ngồi ở các ghế còn lại. Có 5! cách xếp bạn nam, 5! cách xếp bạn nữ. Tất cả có 5 ! 2  cách xếp.

Nếu các bạn nam ngồi ở các ghế ghi số chẵn, các bạn nữ ngồi ở các ghế còn lại thì có  5 ! 2 cách xếp nam và nữ.

Vậy có tất cả 2. 5 ! 2 cách xếp nam nữ ngồi xen kẽ nhau.

b) Các bạn nam được bố trí ngồi ở các ghế từ k đến k + 4, k = 1, 2, 3, 4, 5, 6. Trong mỗi trường hợp có  5 ! 2 cách xếp nam và nữ.

Vậy có 6. 5 ! 2 cách xếp mà các bạn nam ngồi cạnh nhau.