Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc ô tô lúc đầu là x(0<x<120, km/h)
vận tốc của ô tô lúc sau là: x+10(km/h)
tgian dự định: 120/x(h)
quãng đường ô tô đi trg 2h: 2x(km)
quãng đường còn lại: 120-2x
tgian đi trên quãng đường còn lại: \(\dfrac{120-2x}{x+10}\)(h)
Theo đề bài ta có pt:
\(\dfrac{120}{x}\)=2+\(\dfrac{1}{5}\)+\(\dfrac{120-2x}{x+10}\)
Bạn tự giải phương trình nhé!!!
Đổi \(30p=\frac{1}{2}h\)
Gọi vận tốc dự định của người đó là x (km/h) (x > 0)
\(\Rightarrow\) thời gian dự định của người đó là : \(t_{dđ}=\frac{S_{AB}}{v_{dđ}}=\frac{50}{x}\) (h)
Quãng đường ng đó di chuyển được sau 2 giờ là : \(2x\) (km)
\(\Rightarrow\)Quãng đường còn lại là \(50-2x\) (km)
Người đó phải tăng vận tốc thêm 2km/h trên quãng đường còn lại để đến B đúng dự định nên ta có PT :
\(\frac{50}{x}=2+\frac{1}{2}+\frac{50-2x}{x+2}\)
\(\Leftrightarrow\frac{50}{x}=\frac{5}{2}+\frac{50-2x}{x+2}\)
\(\Leftrightarrow\frac{50}{x}=\frac{5x+10+100-4x}{2\left(x+2\right)}\Leftrightarrow\frac{50}{x}=\frac{x+110}{2x+4}\)
\(\Leftrightarrow x^2+110x-100x-200=0\)
\(\Leftrightarrow x^2+10x-200=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+20\right)\Rightarrow\orbr{\begin{cases}x=10\\x=-20\left(l\right)\end{cases}}\)
Vậy vận tốc ban đầu của xe là 10 km/h
Quãng đường AB dài là:
60 x 2 = 120 (km)
Nếu người đó đi với vận tốc 40km/h thì cần thời gian là:
120: 40 = 3 giờ
gọi v là vận tốc bđ
thời gian dự đinh là 50/y
qđ còn lại sau khi đi dk 2h là 50-2v
thời gian đi qđ còn lại là 50-2v/(v+2)
từ giả thiết đề bài cho ta có pt
50-2v/(v+2)+2+30/60=50/v
bạn tự giải pt nha mk hướng dẫn tek thui
GỌI VẬN TỐC BAN ĐẦU LÀ V ,THỜI GIAN DỰ ĐỊNH LÀ T, THỜI GIAN ĐI QUANG ĐƯỜNG CON LẠI LÀ T' (ĐK V,T,T'>0)
S=V*T=V*2+(V+2)*T'
\(\Rightarrow V\cdot T=2V+\left(V+2\right)\cdot T'\)
TA LẠI CÓ :T'=T-2-0,5
\(\Rightarrow V\cdot T=2V+\left(V+2\right)\cdot\left(T-2-0,5\right)\)
\(\Rightarrow2T-5=0,5\cdot V\Rightarrow T=\frac{\left(0,5\cdot V+5\right)}{2}\)
MÀ V*T=50\(\Rightarrow V\cdot\frac{\left(0,5V+5\right)}{2}=50\Rightarrow V=10;-20\)
VÌ V>0 V=10...
Gọi vận tốc ban đầu của ô tô là x(km/h)(Điều kiện: x>0)
Thời gian để đi nửa quãng đường còn lại với vận tốc ban đầu là:
\(\dfrac{210}{x}\)(h)
Thời gian thực tế để đi nửa quãng đường còn lại là:
\(\dfrac{210}{x+2}\)(h)
Vì khi đi được nửa quãng đường xe nghỉ 15' nhưng vẫn đến B đúng giờ nên ta có phương trình:
\(\dfrac{210}{x+2}+\dfrac{1}{4}=\dfrac{210}{x}\)
\(\Leftrightarrow\dfrac{840x}{4x\left(x+2\right)}+\dfrac{x\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{840\left(x+2\right)}{4x\left(x+2\right)}\)
Suy ra: \(840x+x^2+2x=840x+1680\)
\(\Leftrightarrow x^2+842x-840x-1680=0\)
\(\Leftrightarrow x^2+2x-1680=0\)
\(\Leftrightarrow x^2+2x+1-1681=0\)
\(\Leftrightarrow\left(x+1\right)^2-41^2=0\)
\(\Leftrightarrow\left(x+1-41\right)\left(x+1+41\right)=0\)
\(\Leftrightarrow\left(x-40\right)\left(x+42\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-40=0\\x+42=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=40\left(thỏa\right)\\x=-42\left(loại\right)\end{matrix}\right.\)
Vậy: Vận tốc ban đầu là 40km/h
Gọi vận tốc ô tô lúc đầu là x ( km/h ) . Điều kiện 0 < x < 120
Vận tốc ô tô lúc sau là : x + 6 ( km/h )
Thời gian dự định là : \(\frac{120}{x}\left(h\right)\)
Quãng đường ô tô đi trong 1 giờ là : 1.x = x ( km)
Quãng đường còn lại là : 120 - x ( km)
Thời gian ô tô đi trên quãng đường còn lại là : \(\frac{120-x}{x+6}\)
Vì thời gian dự định bằng thời gian thực tế nen ta có phương trình :
\(\frac{120}{x}=1+\frac{1}{6}+\frac{120-x}{x+6}\)
\(\Rightarrow x=48\)(km/h)
Vậy vận tốc ban đầu của ô tô là : 48 km/h
Đ/S: 48 km/h
Gọi vận tốc ô tô lúc đầu là x
Vận tốc ô tô lúc sau là x + 6 ( km/h )
Thời gian dự định là: \(\frac{120}{x}\)( h )
Quãng đg ô tô đi trg 1 h là x ( km )
Quãng đg còn lại là 120 - x (km)
Tg ô tô đi trg trên qđ còn lại là \(\frac{120-x}{x+6}\)
Vì tg dự định bằng tg thực tế nên ta có
120/x=1+1/6+120-x/x+6
=> x = 48 ( km/h )
Kết luận