K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
30 tháng 3 2022
- Xét trường hợp bé hơn 1
Ta có : Nếu có ` a,b,m ` thuộc ` Z` và ` a/b < 1 ` thì ` a/b< (a+m)/(b+m)`
Lí giải : ` a/b= (a(b+m)) / (b(b+m)) ` và `(a+m)/(b+m)=((a+m)b)/((b+m)b)`
Vì ` a/b < 1 nên => a< b => a(b+m) < (a+m)b`
- Xét trường hợp lớn hơn 1
Ta có : Nếu có ` a,b,m ` thuộc ` Z` và ` a/b > 1 ` thì ` a/b> (a+m)/(b+m)`
Lí giải : ` a/b= (a(b+m)) / (b(b+m)) ` và `(a+m)/(b+m)=((a+m)b)/((b+m)b)`
Vì ` a/b > 1 nên => a> b => a(b+m) > (a+m)b`
PT
0
3 tháng 8 2016
Câu 1 : Tìm tất cả các phân số bằng phân số \(\frac{-32}{48}\) và có mẫu là số tự nhiên nhỏ hơn 15
Gọi phân số đó là \(\frac{a}{b}\) với a < b.
Đặt n là số tự nhiên khác 0 bất kì.
Ta so sánh \(\frac{a}{b}\) với \(\frac{a+n}{b+n}\)
<=> so sánh a.(b + n) với (a + n) . b
=> so sánh ab + an với ab + nb.
Vì a<b và n khác 0 nên ab + an < ab + nb
Vậy phân số đã cho tăng lên so với ban đầu.
Gọi phân số là \(\frac{a}{b}\); gọi số tự nhiên khác không là m
1. Trường hợp \(\frac{a}{b}\)<1, m \(\in\)N*
\(\frac{a}{b}\)=\(\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{a.b+a.m}{b\left(b+m\right)}\)
\(\frac{a+m}{b+m}=\frac{\left(a+m\right)b}{\left(b+m\right)b}=\frac{a.b+bm}{b\left(b+m\right)}\)
Vì \(\frac{a}{b}\)<1 => a<b => a.m<b.m => a.b+a.m < a.b+b.m
=> \(\frac{a.b+a.m}{b\left(b+m\right)}\)<\(\frac{a.b+bm}{b\left(b+m\right)}\)
Nên \(\frac{a}{b}\)<\(\frac{a+m}{b+m}\)
Vậy, với trường hợp \(\frac{a}{b}\)<1, khi ta cộng cùng 1 số tự nhiên khác không thì phân số đó giảm đi
2. Trường hợp Trường hợp \(\frac{a}{b}\)>1, m \(\in\)N*:
Chứng minh tương tự.
Kết quả: với trường hợp \(\frac{a}{b}\)>1, khi ta cộng cùng 1 số tự nhiên khác không thì phân số đó tăng lên