K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

Đáp án D.

Sô cách lấy bằng số cách chọn ra 6 quyển để bỏ lại. Yêu cầu đặt ra là 6 quyển để lại phải đủ cả 3 môn.

TH1: 1 văn, 2 âm nhạc, 3 hội họa:  C 5 1 . C 4 2 . C 3 3

TH2: 1 văn, 3 âm nhạc, 2 hội họa:  C 5 1 . C 4 3 . C 3 2

TH3: 1 văn, 4 âm nhạc, 1 hội họa:  C 5 1 . C 4 4 . C 3 1

TH4: 2 văn, 1 âm nhạc, 3 hội họa:  C 5 2 . C 4 1 . C 3 3

TH5: 2 văn, 2 âm nhạc, 2 hội họa:  C 5 2 . C 4 2 . C 3 2

TH6: 2 văn, 3 âm nhạc, 1 hội họa:  C 5 2 . C 4 3 . C 3 1

TH7: 3 văn, 1 âm nhạc, 2 hội họa:  C 5 3 . C 4 1 . C 3 2

TH8: 3 văn, 2 âm nhạc, 1 hội họa:  C 5 3 . C 4 2 . C 3 1

TH9: 4 văn, 1 âm nhạc, 1 hội họa:  C 5 4 . C 4 1 . C 3 1

Lấy 6 quyển sách chia cho 6 bạn: 6! = 720

Nhân lại  ta có : 579600 cách

22 tháng 12 2018

Không gian mẫu là số cách chọn ngẫu nhiên 5 trong 10 cuốn sách rồi tặng cho 5 học sinh.

Suy ra số phần tử của không gian mẫu là .

Gọi A là biến cố Sau khi tặng sách thì mỗi một trong ba loại sách của thầy giáo còn lại ít nhất một cuốn .

Để tìm số phần tử của A, ta tìm số phần tử của biến cố  , tức sau khi tặng sách có môn không còn lại cuốn nào.

Vì tổng số sách của hai loại bất kỳ lớn hơn 5 cuốn nên không thể chọn sao cho cùng hết 2 loại sách. Do vậy chỉ có thể một môn hết sách, ta có các khả năng:

Cách tặng sao cho không còn sách Toán, tức là ta tặng 4 cuốn sách toán, 1 cuốn còn lại Lý hoặc Hóa

+) 4 cuốn sách Toán tặng cho 4 người trong 5 người, có  cách.

+)  1 người còn lại được tặng 1 cuốn trong 6 cuốn (Lý và Hóa), có .

Suy ra có  cách tặng sao cho không còn sách Toán.

Tương tự, có  cách tặng sao cho không còn sách Lý.

Tương tự, có  cách tặng sao cho không còn sách Hóa.

Suy ra số phần tử của biến cố  là.720+2520+2520=5760

Suy ra số phần tử của biến cố A là.30240-5760=24480

Vậy xác suất cần tính 

Chọn C.

 

17 tháng 9 2017

Số cách tặng 6 quyển sách tuỳ ý là:

Số cách tặng hết sách lí 5!.13 = 1560

Số cách tặng hết sách hoá: 6! = 720

Số cách tặng thỏa yêu cầu bài toán:  -1560 - 720 = 13363800

 Chọn C

29 tháng 11 2017

28 tháng 3 2017

Chọn C

Xét phép thử T: “Chọn 7 cuốn sách từ 15 cuốn sách”.

Số phần tử của không gian mẫu trong phép thử là C 15 7 .

Gọi A biến cố  chọn 7 cuốn sách có đủ 3 môn trong phép thử T.

Xác suất của biến cố cần tìm bằng xác suất của biến cố A.

Ta có 

Vậy 


19 tháng 11 2019

a) Số cách chọn 6 quyển sách Toán và Văn là:\(C^1_5.C^5_6+C^2_5.C^4_6+C^3_5.C^3_6+C^4_5.C_6^2+C^5_5.C^1_6=321\)(cách)

Tương tự: Có 1708 cách chọn 6 quyển sách Anh và Văn

Có: 917 cách chọn 6 quyển sách Toán và Anh

-> Có 2946 cách

5 tháng 4 2017

Đáp án là A.

          Ta tìm số cách chọn 7 cuốn còn lại sao cho không có đủ 3 môn.

Có 3 trường hợp :

          7 cuốn còn lại gồm 2 môn toán lý : có C 9 7  cách

          7 cuốn còn lại gồm 2 môn lý hóa : có C 11 7  cách

          7 cuốn còn lại gồm 2 môn toán hóa : có C 10 7  cách

 Suy ra có  C 9 7 +  C 11 7 +  C 10 7 = 486 cách chọn 7 cuốn còn lại sao cho không có đủ 3 môn. Do đó số cách chọn 8 cuốn sao cho 7 cuốn còn lại có đủ 3 môn là C 15 7 - 486 = 5949 cách.

Xác suất cần tìm là P =  5949 C 15 7   =   661 715

2 tháng 7 2017

Đáp án B

Gọi biến cố A: “Số cuốn sách còn lại của thầy Tuấn có đủ cả ba môn”.

Khi đó ta có biến cố: A ¯ : “Số cuốn sách còn lại của thầy Tuấn không có đủ cả 3 môn”.

 

18 tháng 8 2019

Ta xếp các cuốn sách cùng một bộ môn thành một nhóm

Trước hết ta xếp 3 nhóm lên kệ sách chúng ta có: 3!=6 cách xếp

Với mỗi cách xếp 3 nhóm đó lên kệ ta có 5! cách hoán vị các cuốn sách Toán, 6! cách hoán vị các cuốn sách Lý và 8! cách hoán vị các cuốn sách Hóa

Vậy theo quy tắc nhân có tất cả: 6.5!.6!.8 cách xếp

Chọn đáp án B

21 tháng 1 2017

Ta xếp các cuốn sách cùng một bộ môn thành một nhóm

Trước hết ta xếp 3 nhóm lên kệ sách chúng ta có: 3!=6 cách xếp

Với mỗi cách xếp 3 nhóm đó lên kệ ta có 5! cách hoán vị các cuốn sách Toán, 6! cách hoán vị các cuốn sách Lý và 8! cách hoán vị các cuốn sách Hóa

Vậy theo quy tắc nhân có tất cả: 6.5!.6!.8! cách xếp

Chọn đáp án B.