K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2015

Có 4 truồng tạo thành 1 chỗ trống ở bên trong tạo ra 5 chuồng ta sẽ đặt 5 con ở 4 chuồng Còn chỗ trống ở giữa chứa 1 con 1con 5con 5con 5con 5con

16 tháng 4 2015

Mỗi chuồng có số bò lẻ nên tổng số bò trong 4 chuồng là số chẵn. Mà có 21 con bò (số lẻ) nên .......................sai đề !@@#%^&**(())

22 tháng 7 2023

Chuồng 1 chuyển sang chuồng 2 5 con thì cả 2 chuồng có số lợn bằng nhau =>lúc đầu chuồng 1 có số lợn nhiều hơn chuồng 2 là 10 con.

Số lợn ở chuồng 1 lúc đầu là :

(30+10):2=20(con lợn)

Số lợn ở chuồng 2 lúc đầu là:

30-20=10(con lợn)

                Đ/S

27 tháng 12 2017

bò sao ăn được thịt

27 tháng 12 2017

dau tien la bo roi lai su tu la sao

6 tháng 12 2020

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

21 tháng 6 2017

3 con thỏ ứng với số phần thỏ ở chuồng a là:

\(\frac{2}{5}-\frac{1}{3}=\frac{1}{15}\)( số phần thỏ ở chuồng a)

Chuồng a và b có số con là:

\(3:\frac{1}{15}=45\left(con\right)\)

Số thỏ lúc đầu ở chuồng a là:

\(45.\frac{2}{5}=18\left(con\right)\)

Vậy số thỏ lúc đầu ở chuồng a là 18 con

11 tháng 8 2018

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

1. Lũy thừa với số mũ tự nhiên :

Định nghĩa :

Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Công thức :

xn = x.x…x (n thừa số).

\in Q, n \in N, n > 1

ta có : a, b \in Z, b ≠ 0 :

(\frac{a}{b})^n=\frac{a^n}{b^n}

Quy ước :

  • x1 = x
  • x0 = 1 (x ≠ 0)

2. Các công thức tính : x là số hữu tỉ.

Tích các lũy thừa cùng cơ số :

xm . xn = xm + n

thương các lũy thừa cùng cơ số:

xm : xn = xm – n

lũy thừa của lũy thừa :

(xm)n = xm . n

lũy thừa của một tích :

(x . y)n = xn . yn

lũy thừa của một thương :

(x : y)n = xn : yn

13 tháng 3 2016

Chuồng 1: __,__,__,__,__,__,__,__,__,__(300 con)

Chuồng 2: __(300:10=30( con))

Chuồng 1: __,__,__,__,__,__,__,__,__.__(300 con)

Chuồng 2: __,__,__,__,__,__,__,__,__,__,__(30+300=330( con))

330/300=110/100

13 tháng 3 2016

1/(10/11)

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

I DO NOT SURE!