Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\: \: \)\(\Rightarrow\dfrac{1}{20}=\dfrac{1}{40}+\dfrac{1}{d'}\:\)
\(\Rightarrow\dfrac{1}{d'}=\dfrac{1}{20}-\dfrac{1}{40}\)
\(\Rightarrow d'=40\) (cm)
c) Chiều cao của ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\) \(\Rightarrow\dfrac{10}{h'}=\dfrac{40}{40}\)
\(\Rightarrow h'=10\) (cm)
AB = 2cm
OA = 15cm
OF = 10cm
a. Hình vẽ tham khảo ảnh
b. Ta có 1/A'O = 1/OF - 1/AO = 1/10 - 1/15 = 1/30 hay A'O = 30cm
Vì A'B'/AB = A'O/AO nên A'B' = (AB.A'O)/AO = (2.30)/15 = 4cm
Vậy ảnh cao 4cm và cách thấu kính một đoạn 30cm
(Cách chứng minh như trong hình vẽ)
Ảnh ảo, ngược chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{25}=\dfrac{1}{d'}-\dfrac{1}{15}\)
\(\Rightarrow d'=9,375cm\)
Độ cao ảnh A'B':
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{40}{h'}=\dfrac{15}{9,375}\Rightarrow h'=25cm\)