K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

Ta có: \(s\in\left[-1;1\right]\Leftrightarrow-1\le2cos\left(\pi t\right)\le1\\ \Leftrightarrow-\dfrac{1}{2}\le cos\left(\pi t\right)\le\dfrac{1}{2}\)

Trong 1s đầu tiên \(0< t< 1\Rightarrow0< \pi t< \pi\)

Ta có đồ thị hàm số \(y=cos\left(x\right)\) trên \(\left[0;\pi\right]\)

Dựa vào đồ thị, ta thấy 

\(-\dfrac{1}{2}\le cos\left(\pi t\right)\le\dfrac{1}{2}\Leftrightarrow\dfrac{\pi}{3}\le\pi t\le\dfrac{2\pi}{3}\Leftrightarrow\dfrac{1}{3}\le t\le\dfrac{2}{3}\)

Vậy \(t\in\left[\dfrac{1}{3};\dfrac{2}{3}\right]\)

 

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Khi: \(s =  - 5\sqrt 3 \;\)thì \(10sin\left( {10t + \frac{\pi }{2}} \right) =  - 5\sqrt 3 \; \Leftrightarrow sin\left( {10t + \frac{\pi }{2}} \right) =  - \frac{{\sqrt 3 }}{2}\)

\(\begin{array}{l} \Leftrightarrow sin\left( {10t + \frac{\pi }{2}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}10t + \frac{\pi }{2} =  - \frac{\pi }{3} + k2\pi \\10t + \frac{\pi }{2} = \pi  + \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t =  - \frac{\pi }{{12}} + k\frac{\pi }{5}\\t = \frac{\pi }{{12}} + k\frac{\pi }{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy \(t =  \pm \frac{\pi }{{12}} + k\frac{\pi }{5},k \in \mathbb{Z}\) là giá trị cần tìm.

Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A.\cos \left( {\omega t + \varphi } \right),\;\)trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động.Xét hai dao động điều hòa có phương trình:         \({x_1}\left( t \right) = 2.\cos...
Đọc tiếp

Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A.\cos \left( {\omega t + \varphi } \right),\;\)trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động.

Xét hai dao động điều hòa có phương trình:

         \({x_1}\left( t \right) = 2.\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right)\left( {cm} \right)\)

          \({x_2}\left( t \right) = 2.\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)\left( {cm} \right)\)

Tìm dao động tổng hợp \(x\left( t \right) = {x_1}\left( t \right) + {x_2}\left( t \right)\) và sử dụng công thức biến đổi tổng thành tích để tìm biên độ và pha ban đầu của dao động tổng hợp này.

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \(x\left( t \right) = {x_1}\left( t \right) + {x_2}\left( t \right) = 2\left[ {\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + \cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)} \right]\)

          \(2\left[ {\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} + \frac{\pi }{3}t - \frac{\pi }{3}}}{2}} \right).\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} - \frac{\pi }{3}t + \frac{\pi }{3}}}{2}} \right)} \right] = 2\left[2. {\cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right).\cos \frac{\pi }{4}} \right] = 2\sqrt 2 \cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right)\)

Vậy biên độ là \(2\sqrt 2 \), pha ban đầu \( - \frac{\pi }{{12}}\)

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Độ dài bóng OM bằng 10 cm khi s = 10 hoặc s = -10.

Khi s = 10. Ta có: \(17cos5\pi t = 10 \Leftrightarrow cos5\pi t = \frac{{10}}{{17}}\)

Khi s = 10. Ta có: \(17cos5\pi t =  - 10 \Leftrightarrow cos5\pi t = \frac{{ - 10}}{{17}}\)

Từ đó, ta có thể xác định được các thời điểm t bằng cách giải phương trình côsin.

Trong vật lí, ta biết rằng phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A\cos (\omega t + \varphi )\), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0), \(\omega t + \varphi \) là pha dao động tại thời điểm t và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động. Dao động điều hòa này...
Đọc tiếp

Trong vật lí, ta biết rằng phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A\cos (\omega t + \varphi )\), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0), \(\omega t + \varphi \) là pha dao động tại thời điểm t và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động. Dao động điều hòa này có chu kỳ \(T = \frac{{2\pi }}{\omega }\) (tức là khoảng thời gian để vật thực hiện một dao động toàn phần).

Giả sử một vật dao động điều hòa theo phương trình \(x\left( t \right) =  - 5\cos 4\pi t\) (cm).

a) Hãy xác định biên độ và pha ban đầu của dao động.

b) Tính pha của dao động tại thời điểm \(t = 2\) (giây). Hỏi trong khoảng thời gian 2 giây, vật thực hiện được bao nhiêu dao động toàn phần?

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Biên độ dao động \(A =  - 5\); Pha ban đầu của dao động: \(\varphi  = 0\)

b) Pha dao động tại thời điểm \(t = 2\) à \(\omega t + \varphi  = 4\pi .2 = 8\pi \)

Chu kỳ \(T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{4\pi }} = 0,2\)

Trong khoảng thời gian 2 giây, số dao động toàn phần vật thực hiện được là: \(\frac{2}{{0,2}} = 10\) (dao động)

NV
22 tháng 10 2021

\(sin\left(2t+\dfrac{\pi}{4}\right)\le1\Rightarrow x\le3\)

\(x_{max}=3\) khi \(sin\left(2t+\dfrac{\pi}{4}\right)=1\)

\(\Leftrightarrow2t+\dfrac{\pi}{4}=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow t=\dfrac{\pi}{8}+k\pi\) với \(k\in Z\)

a: Vận tốc trung bình là;

\(\dfrac{s\left(t\right)-s\left(t0\right)}{t-t0}\)

b: Cho ta biết một điều đó là Khi t càng tới gần t0, có nghĩa là |t-t0| càng nhỏ thì vận tốc trung bình càng thể hiện được chính xác hơn mức độ nhanh chậm của chuyển động tại thời điểm t0.