K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

Trong trường hợp khí cầu đứng yên thì quãng đường vật rơi tự do từ độ cao s tính theo công thức s = (g t 2 )/2

Từ đó suy ra khoảng thời gian rơi tự do của vật bằng: t = 2 h g =  2 . 300 9 , 8

13 tháng 8 2019

Trong trường hợp khí cầu đang bay lên thì lúc đầu vật được ném lên cao với vận tốc đầu v 0  = 4,9 m/s bằng vận tốc bay lên của khí cầu từ độ cao s và chuyển động chậm dần đều trong khoảng thời gian  t 2  lên tới độ cao lớn nhất, tại đó v = 0. Khoảng thời gian  t 2  được tính theo công thức:

v =  v 0  – g t 2  = 0 ⇒  t 2  = 0,5 s

Sau đó vật lại rơi tự do từ độ cao lớn nhất xuống đến độ cao 300 m trong thời gian  t 2  = 0,5 s, rồi tiếp tục tơi nhanh dần đều với vận tốc  v 0  = 4,9 m/s từ độ cao 300 m xuống tới đất trong khoảng thời gian  t 1  ≈ 7,3 s (giống như trường hợp trên).

Như vậy, khoảng thời gian chuyển động của vật sẽ bằng: t = 2 t 2  +  t 1  = 2.0,5 + 7,3 = 8,3 s.

25 tháng 9 2018

Trong trường hợp khí cầu đang hạ xuống thì vật rơi nhanh dần đều với vận tốc đầu v 0 = 4,9 m/s bằng vận tốc hạ xuống của khí cầu từ độ cao s được tính theo công thức s =  v 0 t + (g t 2 )/2

Thay số vào ta thu được phương trình bậc 2:

300 = 4.9t + (9.8 t 2 )/2 ⇔  t 2  + t - 300/4.9 = 0

Giải ra ta tìm được t ≈ 7,3 s (chú ý chỉ lấy nghiệm t > 0)

Như vậy thời gian rơi của vật là t ≈ 7,3 s

Bài 1. Một vật được thả rơi từ một khí cầu đang bay ở độ cao 500 m. Bỏ qua lực cản của không khí. Lấy gia tốc rơi tự do g = 10 m/s2 . Hỏi sau bao lâu vật rơi chạm đất ? Nếu: a. Khí cầu đứng yên. b. Khí cầu đang hạ xuống thẳng đứng với tốc độ 5,0 m/s. c. Khí cầu đang bay lên thẳng đứng với tốc độ 5,0 m/s      Bài 2. Hai vật chuyển động với vận tốc không đổi trên hai đường thẳng vuông...
Đọc tiếp

Bài 1. Một vật được thả rơi từ một khí cầu đang bay ở độ cao 500 m. Bỏ qua lực cản của không khí. Lấy gia tốc rơi tự do g = 10 m/s2 . Hỏi sau bao lâu vật rơi chạm đất ? Nếu: a. Khí cầu đứng yên. b. Khí cầu đang hạ xuống thẳng đứng với tốc độ 5,0 m/s. c. Khí cầu đang bay lên thẳng đứng với tốc độ 5,0 m/s      Bài 2. Hai vật chuyển động với vận tốc không đổi trên hai đường thẳng vuông góc với nhau với vận tốc lần lượt là v1= 30 m/s, v2 = 20 m/s. Tại thời điểm khoảng cách giữa hai vật nhỏ nhất thì vật thứ nhất cách giao điểm của quỹ đạo một đoạn d1= 500 m, hỏi lúc đó vật thứ hai cách giao điểm trên một đoạn d2 là bao nhiêu?                                                                                                          Bài 3: Trên mặt nước yên lặng, có một cái bè hình vuông mỗi cạnh dài l được kéo đi với vận tốc v đối với nước theo phương song song với một cạnh bè (coi chuyển động của bè không gây ra chuyển động cho nước). Một con cá bới với vận tốc u không đổi đối với nước từ một đỉnh hình vuông theo chu vi của bè. Cần bao nhiêu thời gian để cá trở lại đỉnh ban đầu ? Coi rằng cạnh của bè đủ dài và không tính đến sự thay đổi tính chất chuyển động tại các điểm đổi hướng bơi của cá. Cho l = 5m; v = 3m/s; u = 5m/s

AE giải hộ mình với

 

0
25 tháng 4 2018

Chọn C.

4 tháng 10 2017

29 tháng 9 2019

c,

Khi khí cầu đang bay lên thì lúc đầu vật được ném lên cao với vận tốc vo = 4,9 m/s bằng vận tốc bay lên của khí cầu từ độ cao s và chuyển động thẳng chậm dần đều trong khoảng thời gian t2 lên tới độ cao lớn nhất , tại đó v = 0 .

=> khoảng thời gian t2 tính theo công thức

v = vo - gt2 = 0

=> t2 = \(\frac{vo}{g}=\frac{4,9}{9,8}=0,5s\)

Sau đó vật rơi tự do từ độ cao lớn nhất xuống độ cao 300m trong thời gian t2 = 0,5s rồi tiếp tục rơi nhanh dần đều với vận tốc vo = 4,9m/s từ độ cao 300m xuống tới đất trong khoảng thời gian t1 \(\approx7,3s\)

=> khoảng thời gian chuyển động là

t = 2t2 + t1 = 2. 0,5 + 7,3 = 8,3 s

29 tháng 9 2019

a,

Khi khí cầu đứng yên thì quãng đường vật rơi tự do từ độ cao s theo công thức

s =\(\frac{gt^2}{2}\)

=> khoảng thời gian rơi tự do của vật bằng :

t = \(\sqrt{\frac{2s}{g}}\)

= \(\sqrt{\frac{2.300}{9,8}}\)

\(\approx\) 7,8 ( s )

31 tháng 8 2019

Chọn A.

19 tháng 10 2017

31 tháng 7 2021

a, lấy g=10m/s

ta có \(300=\dfrac{1}{2}gt^2\Rightarrow t=\sqrt{60}\left(s\right)\)

b, vận tốc đầu của vật là -5m/s

\(300=-5.t+\dfrac{1}{2}gt^2\Rightarrow t\approx8,3\left(s\right)\)

c, vận tốc đầu 5m/s

\(300=5t+\dfrac{1}{2}gt^2\Rightarrow t\approx7,262\left(s\right)\)

31 tháng 7 2021

B