Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(10^1+10^2+10^3+...+10^{100}\)
\(=10+\left(10^2+10^3+10^4\right)+\left(10^5+10^6+10^7\right)+...+\left(10^{98}+10^{99}+10^{100}\right)\)
\(=10+10^2\left(1+10+10^2\right)+10^5\left(1+10+10^2\right)+...+10^{98}\left(1+10+10^2\right)\)
\(=10+10^2\cdot111+10^5\cdot111+...+10^{98}\cdot111\)
\(=10+\left(10^2\cdot111+10^5\cdot111+...+10^{98}\cdot111\right)\)
\(=10+111\left(10^2+10^5+...+10^{98}\right)\)
Do \(10^2+10^5+...+10^{98}\in N\) => 111 ( 102 + 105 + ... + 1098 ) chia hết cho 111 ( vì 111 chia hết cho 111 )
Mà 10 chia cho 111 dư 10 => 10 + 111 ( 102 + 105 + ... + 1098 ) chia cho 111 dư 10
Vậy 101 + 102 + 103 + ... + 10100 chia cho 111 dư 10.
1 vàng bằng :
1 x 10 x 10 x 1000 = 100000 ( gỗ )
100 bạc bằng :
100 x 10 x 1000 = 1000000 ( gỗ )
900 chì bằng :
900 x 1000 = 900000 ( gỗ )
Ông đó có tất cả:
900000 + 1000000 + 100000 = 2000000 ( gỗ )
Theo đề bài ta có :
\(a^n=a^{10}\cdot\left(a^2\right)^{10}\cdot\left(a^3\right)^{10}...\left(a^{10}\right)^{10}\)
\(\Leftrightarrow a^n=a^{10}\cdot a^{20}\cdot a^{30}...a^{100}\)
\(\Rightarrow a^n=a^{10+20+30+...+100}\)
\(\Rightarrow n=10+20+30+...+100\)
\(\Rightarrow n=550\)
Đáp số : n = 550.
a, A= 2 + 4 + 6 + 8 + 10 +...+100
Số số hạng của dãy số trên là:
(100 -2) : 2 + 1 = 50 (số)
Tổng của dãy số trên là:
(100 + 2) x 50 : 2 = 2550
Vậy A = 2550
b, B = 10 + 20 + 40 + 80 + 160 + 320
B = (20 + 80) + (40 + 160) + (10 + 320)
B = 100 + 200 + 330
B = 630
Vậy B = 630
c, C = 1 + 10 + 100 + 1000 + 10000
C = 11 + 1100 + 10000
C = 11111
Vậy C = 11111
Chúc bạn học tốt