K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

- Ta có : 97 là số nguyên tố.
a2-b2=97
=> a - b = 1
=> a + b = 97
=> a = 49
=> b = 48
=> a2+b2= 492+482=4705

NV
8 tháng 5 2023

Trước hết, với \(a+b+c=1\) ta có:

\(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)

\(=\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\)

\(\ge2a^2b+2b^2c+2c^2a+a^2b+b^2c+c^2a\)

Hay \(a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)

Từ đó:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\dfrac{a^4}{a^2b}+\dfrac{b^4}{b^2c}+\dfrac{c^4}{c^2a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

\(\ge\dfrac{3\left(a^2b+b^2c+c^2a\right)\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}=3\left(a^2+b^2+c^2\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

8 tháng 5 2023

em cảm ơn thầy nhiều ạ !

 

 

NV
29 tháng 4 2021

Từ giả thiết:

\(a^2=2\left(b^2+c^2\right)\ge\left(b+c\right)^2\Rightarrow\left(\dfrac{a}{b+c}\right)^2\ge1\Rightarrow\dfrac{a}{b+c}\ge1\)

\(P=\dfrac{a}{b+c}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+2bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+\dfrac{1}{2}\left(b+c\right)^2}\)

\(P\ge\dfrac{a}{b+c}+\dfrac{1}{\dfrac{a}{b+c}+\dfrac{1}{2}}\)

Đặt \(\dfrac{a}{b+c}=x\ge1\)

\(\Rightarrow P\ge x+\dfrac{1}{x+\dfrac{1}{2}}=\dfrac{4}{9}\left(x+\dfrac{1}{2}\right)+\dfrac{1}{x+\dfrac{1}{2}}+\dfrac{5}{9}x-\dfrac{2}{9}\)

\(P\ge2\sqrt{\dfrac{4}{9}\left(x+\dfrac{1}{2}\right).\dfrac{1}{\left(x+\dfrac{1}{2}\right)}}+\dfrac{5}{9}.1-\dfrac{2}{9}=\dfrac{5}{3}\)

\(P_{min}=\dfrac{5}{3}\) khi \(x=1\) hay \(a=2b=2c\)

15 tháng 4 2023

Tại sao dòng 6 lại \(+-\) 2/9 vậy ạ?

 

12 tháng 5 2022

\(\left(ad+bc\right)\left(a^2d^2+b^2c^2\right)=0\)

\(\Rightarrow a^3d^3+adb^2c^2+bca^2d^2+b^3c^3=0\)

\(\Rightarrow a^3d^3+abcd\left(bc+ad\right)+b^3c^3=0\)

\(\Rightarrow a^3d^3+abcd.0+b^3c^3=0\)

\(\Rightarrow a^3d^3+b^3c^3=0\)

12 tháng 5 2022

Bạn tự chế hay sao vậy mà cái đk thứ 1 ko cần dùng .-.?

NV
21 tháng 8 2021

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow ab+bc+ca\le1\)

\(\Rightarrow P_{max}=1\) khi \(a=b=c\)

Lại có:

\(\left(a+b+c\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow ab+bc+ca\ge-\dfrac{a^2+b^2+c^2}{2}=-\dfrac{1}{2}\)

\(P_{min}=-\dfrac{1}{2}\) khi \(a+b+c=0\)

NV
22 tháng 2 2021

Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)

\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
18 tháng 8 2021

\(9=3a^2+2b^2+2bc+2c^2=\left(a+b+c\right)^2+2a^2+b^2+c^2-2a\left(b+c\right)\)

\(\Rightarrow9\ge\left(a+b+c\right)^2+2a^2+\dfrac{1}{2}\left(b+c\right)^2-2a\left(b+c\right)\)

\(\Rightarrow9\ge\left(a+b+c\right)^2+\dfrac{1}{2}\left(2a-b-c\right)^2\ge\left(a+b+c\right)^2\)

\(\Rightarrow-3\le a+b+c\le3\)

\(T_{max}=3\) khi \(a=b=c=1\)

\(T_{min}=-3\) khi \(a=b=c=-1\)

18 tháng 8 2021

con cảm ơn thầy ah.

NV
17 tháng 8 2021

\(a^2+b^2=a^3+b^3=a^4+b^4\)

\(\Rightarrow\left(a^3+b^3\right)^2=\left(a^2+b^2\right)\left(a^4+b^4\right)\)

\(\Rightarrow a^6+b^6+2a^3b^3=a^6+b^6+a^2b^4+a^4b^2\)

\(\Rightarrow2a^3b^3=a^2b^2\left(a^2+b^2\right)\)

\(\Rightarrow2ab=a^2+b^2\)

\(\Rightarrow\left(a-b\right)^2=0\)

\(\Rightarrow a=b\)

Thế vào \(a^2+b^2=a^3+b^3\)

\(\Rightarrow a^2+a^2=a^3+a^3\Rightarrow2a^3=2a^2\Rightarrow a=b=1\)

\(\Rightarrow a+b=2\)