K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

THEO PHÂN SỐ : \(\frac{a+b}{c}=\frac{6}{5}\) \(\Rightarrow\) \(\hept{\begin{cases}a+b=6\\c=5\end{cases}}\)1

THEO PHÂN SỐ:\(\frac{b+c}{a}=\frac{9}{2}\Rightarrow\hept{\begin{cases}b+c=9\\a=2\end{cases}}\)2

THEO VÀ 2 , TA CÓ :  \(\frac{a+c}{b}=\frac{2+5}{4}=\frac{7}{4}\)

ĐÁP SỐ \(\frac{a+c}{b}=\frac{7}{4}\)

   ~ HOK TỐT ~

13 tháng 6 2018

\(\frac{a+b}{c}=\frac{6}{5}\Rightarrow\frac{a+b}{6}=\frac{c}{5}=\frac{a+b+c}{6+5}=\frac{a+b+c}{11}\left(1\right)\)

\(\frac{b+c}{a}=\frac{9}{2}\Rightarrow\frac{b+c}{9}=\frac{a}{2}=\frac{a+b+c}{9+2}=\frac{a+b+c}{11}\left(2\right)\)

từ \(\left(1\right)\left(2\right)\Rightarrow\frac{a+b}{6}=\frac{c}{5}=\frac{b+c}{9}=\frac{a}{2}=\frac{a+b+c}{11}\Rightarrow\frac{c}{5}=\frac{a}{2}\Rightarrow2c=5a\Rightarrow c=\frac{5}{2}a\)

\(\frac{a+b}{6}=\frac{b+c}{9}\Rightarrow\frac{3\left(a+b\right)}{6}=\frac{3\left(b+c\right)}{9}=\frac{a+b}{2}=\frac{b+c}{3}=\frac{a}{2}+\frac{b}{2}=\frac{b}{3}+\frac{c}{3}\)

\(\Rightarrow\frac{b}{2}-\frac{b}{3}=\frac{c}{3}-\frac{a}{2}=\frac{3b-2b}{6}=\frac{2c-3a}{6}=\frac{b}{6}=\frac{2c-3a}{6}\Rightarrow b=2c-3a\)mà \(c=\frac{5}{2}a\)

\(\Rightarrow b=2c-3a=2\cdot\frac{5}{2}a-3a=5a-3a=2a\)

\(\Rightarrow\frac{a+c}{b}=\frac{a+\frac{5}{2}a}{2a}=\frac{\frac{7}{2}a}{2a}=\frac{7}{4}\)

9 tháng 4 2017

Tự nghĩ nha, đây là 1 dạng của bất đảng thức:\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

Cố gắng đưa bài toán của bạn về dấu bằng kia

Cách CM xem trang 43, nâng cao phát triển toán 8 tập 2.

MÌNH GỢI Ý GẦN HẾT RỒI,  BẠN TỰ CM NỐT RỒI BẤM ĐÚNG CHO MÌNH NHÉ

30 tháng 12 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^2+2\left(\frac{1}{a}+\frac{1}{b}\right)\frac{1}{c}+\left(\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\left(\frac{1}{a}\right)^2+2\frac{1}{a}.\frac{1}{b}+\left(\frac{1}{b}\right)^2+2\left(\frac{1}{ac}+\frac{1}{bc}\right)+\left(\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2+2\frac{1}{ab}+2\left(\frac{1}{ac}+\frac{1}{bc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{a+b+c}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

30 tháng 12 2017

ok thank bn

8 tháng 3 2021

tên sai kìa,EKAWADA CONAN mà

9 tháng 6 2017

sr tui ko có câu hỏi tương tự tui chỉ có câu hỏi y hệt thôi Xem câu hỏi

22 tháng 4 2019

*Đặt P = (a-b)/c + (b-c)/a + (c-a)/b, ta có:
P = (a-b)/c + (b-c)/a + (c-a)/b
=> abc.P = ab(a-b) + bc(b-c) + ca(c-a)
= ab(a-b) + bc(b-a + a-c) + ca(c-a) 
= ab(a-b) - bc(a-b) - bc(c-a) + ca(c-a) 
= b(a-b)(a-c) + c(c-a)(a-b) 
= (a-b)(a-c)(b-c) 
=> P = (a-b)(a-c)(b-c)/abc 
*Đặt Q = c/(a-b) + a/(b-c) + b/(c-a), ta có:
Vì a+b+c = 0 => a+b = -c ; b+c = -a ; c+a = -b
Q = c/(a-b) + a/(b-c) + b/(c-a) 
=> (a-b)(b-c)(c-a).Q = c(b-c)(c-a) + a(a-b)(c-a) + b(a-b)(b-c) 
= c(b-c)(c-a) + (-b-c)(a-b)(c-a) + b(a-b)(b-c) 
= c(b-c)(c-a) – c(a-b)(c-a) – b(a-b)(c-a) + b(a-b)(b-c) 
= c(c-a)(2b-a-c) + b(a-b)(a+b-2c) 
= 3bc(c-a) – 3bc(a-b) 
= 3bc(b+c-2a) 
= 3bc(-a-2a) 
= -9abc 
=> Q = -9abc/(a-b)(b-c)(c-a) = 9abc /(a-b)(b-c)(a-c) 
Vậy P.Q = 9 (đpcm)