Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{x-y}{z-y}=-10\)
nên \(z-y=\dfrac{x-y}{-10}\)
hay \(y-z=\dfrac{x-y}{10}=\dfrac{1}{10}\left(x-y\right)\)
Ta có: \(\dfrac{x-y}{z-y}=-10\)
\(\Leftrightarrow\dfrac{x-y}{-10}=\dfrac{z-y}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-y}{-10}=\dfrac{z-y}{1}=\dfrac{x-y-z+y}{-10-1}=\dfrac{x-z}{-11}\)
Do đó: \(\dfrac{x-y}{-10}=\dfrac{x-z}{-11}\)
\(\Leftrightarrow x-z=\dfrac{11\left(x-y\right)}{10}=\dfrac{11}{10}\left(x-y\right)\)
\(\Leftrightarrow\dfrac{x-z}{y-z}=\dfrac{11}{10}\left(x-y\right):\dfrac{1}{10}\left(x-y\right)=\dfrac{11}{10}\cdot\dfrac{10}{1}=11\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\\\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\\\frac{1}{x}+\frac{1}{z}=-\frac{1}{y}\end{cases}}\) (*)
Ta có: \(A=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}\)
\(=\frac{x}{z}+\frac{y}{z}+\frac{x}{y}+\frac{x}{y}+\frac{y}{x}+\frac{z}{x}\)
\(=\left(\frac{x}{z}+\frac{x}{y}\right)+\left(\frac{y}{x}+\frac{y}{z}\right)+\left(\frac{z}{x}+\frac{z}{y}\right)\)
\(=x\left(\frac{1}{z}+\frac{1}{y}\right)+y\left(\frac{1}{x}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)
Thay (*) vào,ta có : \(A=x.\left(\frac{-1}{x}\right)+y.\left(-\frac{1}{y}\right)+z.\left(-\frac{1}{z}\right)=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
thay z = -(x+y) , y = -(z+x),... vao
=> Duoc bieu thuc trong do co 1/xy + 1/yz + 1/zx = (x+y+z)/xyz = 0
\(x+y+z=0\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\Rightarrow x^2+2xy+y^2=z^2\Rightarrow x^2+y^2-z^2=-2xy\)
Tương tự: \(y^2+z^2-x^2=-2yz,x^2+z^2-y^2=-2xz\)
\(\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+y^2-z^2}+\frac{1}{x^2+z^2-y^2}\)
\(=\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{x+y+z}{-2xyz}=0\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^2=z^2\Rightarrow x^2+y^2+2xy=z^2\)
\(\Rightarrow x^2+y^2=z^2-2xy\)
Tương tự ta có : \(y^2+z^2=x^2-2yz\)
\(x^2+z^2=y^2-2xz\)
Thay vào biểu thức ta có :
\(A=\frac{x^2}{y^2+z^2-x^2}+\frac{y^2}{x^2+z^2-y^2}+\frac{z^2}{x^2+y^2-z^2}\)
\(=\frac{x^2}{x^2-2yz-x^2}+\frac{y^2}{y^2-2xz-y}+\frac{z^2}{z^2-2xy-z^2}\)
\(=-\frac{x^2}{2yz}-\frac{y^2}{2xz}-\frac{z^2}{2xy}\)
\(=\frac{-x^3-y^3-z^3}{2xyz}=-\frac{x^3+y^3+z^3}{2xyz}\)
\(=\frac{3xyz}{2xyz}=-\frac{3}{2}\)
Chỗ \(x^3+y^3+z^3=3xyz\)là do \(x+y+z=0\)nhé, bạn cần chứng minh không ?
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)
\(\frac{1}{x}+\frac{1}{z}=-\frac{1}{y}\)
\(\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)
\(A=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}=\frac{x}{z}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{y}{x}+\frac{z}{x}\)
\(=\left(\frac{y}{z}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{x}{y}\right)+\left(\frac{z}{y}+\frac{z}{x}\right)\)
\(=y\left(\frac{1}{z}+\frac{1}{x}\right)+x\left(\frac{1}{z}+\frac{1}{y}\right)+z\left(\frac{1}{y}+\frac{1}{x}\right)\)
\(=y.\frac{-1}{y}+x.\frac{-1}{x}+z.\frac{-1}{z}=-1-1-1=-3\)
Vậy nên A = -3
\(a^2-2b+6b+b^2=-10\)
\(\Leftrightarrow a^2-2a+6b+b^2+10=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\left(1\right)\)
Vì \(\hept{\begin{cases}\left(a-1\right)^2\ge0\forall a\\\left(b+3\right)^2\ge0\forall b\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+3\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-3\end{cases}}}\)
\(L=\frac{x+y}{z}+1+\frac{y+z}{x}+1+\frac{x+z}{y}+1-3\)
\(=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-3=0-3=-3\)
ta có:\(\frac{x-y}{z-y}=-10\)
<=>\(x-y=10y-10z\)
<=>\(11y=-\left(x+10z\right)\)
<=>\(11y-11z=-\left(x-z\right)\)
<=>\(x-z=-\frac{11\left(y-z\right)}{ }\)
tahy vào biểu thức thì GT bằng -11
dap an A Tam An 2A6 tieu hoc thanh xuan hoc thanh xuan bac giu tin nhan