Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B. Điện trở của dây dẫn giảm đi 10 lần
Áp dụng công thức:
Ta có: \(R=\rho\cdot\dfrac{l}{S}\)
Nếu giảm \(l\) đi 3 lần, tăng S lên 2 lần thì điện trở của dây giảm 6 lần.
Điện trở của dây được tính theo công thức: \(E=p.\dfrac{l}{S}\)
Với ℓ là chiều dài dây, S là tiết diện.
Khi tiết diện dây tăng lên 2 lần thì: \(R'=p.\dfrac{l}{2S}=\dfrac{R}{2}\)
\(R=\rho\dfrac{l}{S}\)
\(R'=\rho\dfrac{2l}{\dfrac{1}{2}S}=\rho\dfrac{4l}{S}=4R\)
Ta có:
Nếu chiều dài dây dẫn giảm đi 5 lần và tiết diện tăng 2 lần thì điện trở của dây dẫn thay đổi:
Điện trở của dây dẫn giảm đi 10 lần
→ Đáp án B
Ta có:
Nếu chiều dài dây dẫn giảm đi 5 lần và tiết diện tăng 2 lần thì điện trở của dây dẫn thay đổi:
Điện trở của dây dẫn giảm đi 10 lần
→ Đáp án B
Ta có: \(R=\delta\dfrac{l}{S}\)
Ta thấy rằng tiết diện tỉ lệ nghịch với điện trở dây dẫn nên khi tăng/giảm tiết diện dây đó lên 5 lần thì điện trở sẽ giảm/tăng đi 5 lần.
Điện trở của dây dẫn khi tiết diện tăng là:
\(R_t=\dfrac{R}{5}=2\left(\Omega\right)\)
Điện trở của dây dẫn khi tiết diện giảm là:
\(R_g=5R=50\left(\Omega\right)\)
Theo đề bài, ta có: \(\left\{{}\begin{matrix}\rho=\rho'\\l=l'\\S'=2S\\R=?\end{matrix}\right.\)
Từ công thức \(R=\rho.\dfrac{l}{S}\rightarrow\rho=\dfrac{R.S}{l}\)
\(\rho=\rho'\\ \rightarrow\dfrac{R.S}{l}=\dfrac{R'.S'}{l}\\ \rightarrow R.S=R'.S'\\ \rightarrow R.S=R'.2S'\\ \rightarrow R=2.R'\\ \rightarrow R'=\dfrac{R}{2}\)
Vậy điện trở giảm 1 nửa
\(\rightarrow D\) Giảm đi 2 lần