Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)
\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=0\)
=> x + y + z = 0
Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)
x3 + y3 + z3 - 3xyz = 0
=> x3 + y3 + z3 = 3xyz
ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)
=> 1/xy + 1/yz + 1/xz = 0
=> x + y + z = 0
Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)
x3 + y3 + z3 - 3xyz = 0
=> x3 + y3 + z3 = 3xyz
(x+y+z)^2=x^2+y^2+z^2
=>2(xy+yz+xz)=0
=>xy+xz+yz=0
=>xy/xyz+xz/xyz+yz/xyz=0
=>1/x+1/y+1/z=0
Sử dụng BĐT AM-GM, ta có:
\(x^3+y^2\ge2yx\sqrt{x}\)
\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)
Tương tự cộng lại suy ra:
\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
(x+y+z)^2=x^2+y^2+z^2
=>x^2+y^2+z^2+2(xy+yz+xz)=x^2+y^2+z^2
=>2(xy+yz+xz)=0
=>xy+yz+xz=0
1/x+1/y+1/z
=(xz+yz+xy)/xyz
=0/xyz=0
Làm theo cách giải trình :P
Ta có:
\(\left(x+y+z\right)^2=1^2\)
\(x^2+y^2+z^2+2.\left(xy+yz+xz\right)=1\)
\(1+2.\left(xy+yz+xz\right)=1\)
\(2.\left(xy+yz+xz\right)=0\Rightarrow xy+yz+xz=0\)
\(\left(x+y+z\right).\left(x^2+y^2+z^2\right)=1.1\)
\(x^3+y^3+z^3+x^2.\left(y+z\right)+y^2.\left(x+z\right)+2^2.\left(x+y\right)=1\)
\(1+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y=1\)
\(xy.\left(x+y\right)+xz.\left(x+z\right)+yz.\left(y+z\right)=0\)
\(xy.\left(x+y+z-z\right)+xz.\left(x+y+z-y\right)+yz.\left(x+y+z-x\right)=0\)
\(xy.\left(1-z\right)+xz.\left(1-y\right)+yz.\left(1-x\right)=0\)
\(xy+xz+yz-3xyz=0\)
Khi: \(xy+yz+xz0,xyz\)cũng bằng 0
đpcm.