K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 10 2020

\(\Leftrightarrow x+10^0=-90^0+k360^0\)

\(\Leftrightarrow x=-100^0+k360^0\)

1: cos(3x-45 độ)=0

=>3x-45 độ=90 độ+k*180 độ

=>3x=135 độ+k*180 độ

=>x=45 độ+k*60 độ

=45 độ-120 độ+(k+2)*60 độ

=-75 độ+z*60 độ

=>Chọn B

2;

tan(x-15 độ)=1

=>x-15 độ=45 độ+k*180 độ

=>x=60 độ+k*180 độ

=>Chọn C

3: 2*cos(4x-20 độ)=0

=>cos(4x-20 độ)=0

=>4x-20 độ=90 độ+k*180 độ

=>4x=110 độ+k*180 độ

=>x=27,5 độ+k*45 độ

=>Chọn C

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có

\(\begin{array}{l}\cot x{\rm{ }} = {\rm{  - 1}}\\ \Leftrightarrow \cot x{\rm{ }} = {\rm{ cot  - }}\frac{\pi }{4}\\ \Leftrightarrow x{\rm{ }} = {\rm{  - }}\frac{\pi }{4} + k\pi ;k \in Z\end{array}\)

Vậy phương trình đã cho có  nghiệm là \(x{\rm{ }} = {\rm{  - }}\frac{\pi }{4} + k\pi ;k \in Z\)

Chọn A

19 tháng 7 2019

\(tan3x=tanx\)

Điều kiện: \(x \ne \dfrac{\pi }{6} + \dfrac{{k\pi }}{3},k \in Z\)

\( \Leftrightarrow \tan 3x - {\mathop{\rm tanx}\nolimits} = 0\\ \Leftrightarrow \dfrac{{\sin 2x}}{{\cos 3x.cosx}} = 0\\ \Leftrightarrow \sin 2x = 0\\ \Leftrightarrow 2x = k\pi \\ \Leftrightarrow x = \dfrac{{k\pi }}{2},k \in Z \)

Chọn A

19 tháng 7 2019

A

NV
19 tháng 10 2019

\(tanx=tan\alpha\Rightarrow x=\alpha+k\pi\)

19 tháng 7 2019
Điều kiện: \(\left\{ \begin{array}{l}\cos 3x \ne 0\\\sin 2x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \dfrac{\pi }{6} + k\dfrac{\pi }{3}\\x \ne \dfrac{{k\pi }}{2}\end{array} \right.,k \in \mathbb{Z}.\)
Phương trình \(\tan 3x.\cot 2x = 1\)
\(\Leftrightarrow \tan 3x = \dfrac{1}{{\cot 2x}}\\ \Leftrightarrow \tan 3x = \tan 2x\\ \Leftrightarrow 3x = 2x + k\pi\)
\(\Leftrightarrow x = k\pi\) loại do điều kiện \(x \ne \dfrac{{k\pi }}{2}.\) => Chọn D
28 tháng 7 2019
https://i.imgur.com/Zdtaxi4.jpg
28 tháng 7 2019

kết quả cuối cùng là bao nhiêu vậy bạn