Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x+10^0=-90^0+k360^0\)
\(\Leftrightarrow x=-100^0+k360^0\)
1: cos(3x-45 độ)=0
=>3x-45 độ=90 độ+k*180 độ
=>3x=135 độ+k*180 độ
=>x=45 độ+k*60 độ
=45 độ-120 độ+(k+2)*60 độ
=-75 độ+z*60 độ
=>Chọn B
2;
tan(x-15 độ)=1
=>x-15 độ=45 độ+k*180 độ
=>x=60 độ+k*180 độ
=>Chọn C
3: 2*cos(4x-20 độ)=0
=>cos(4x-20 độ)=0
=>4x-20 độ=90 độ+k*180 độ
=>4x=110 độ+k*180 độ
=>x=27,5 độ+k*45 độ
=>Chọn C
Ta có
\(\begin{array}{l}\cot x{\rm{ }} = {\rm{ - 1}}\\ \Leftrightarrow \cot x{\rm{ }} = {\rm{ cot - }}\frac{\pi }{4}\\ \Leftrightarrow x{\rm{ }} = {\rm{ - }}\frac{\pi }{4} + k\pi ;k \in Z\end{array}\)
Vậy phương trình đã cho có nghiệm là \(x{\rm{ }} = {\rm{ - }}\frac{\pi }{4} + k\pi ;k \in Z\)
Chọn A
\(tan3x=tanx\)
Điều kiện: \(x \ne \dfrac{\pi }{6} + \dfrac{{k\pi }}{3},k \in Z\)
\( \Leftrightarrow \tan 3x - {\mathop{\rm tanx}\nolimits} = 0\\ \Leftrightarrow \dfrac{{\sin 2x}}{{\cos 3x.cosx}} = 0\\ \Leftrightarrow \sin 2x = 0\\ \Leftrightarrow 2x = k\pi \\ \Leftrightarrow x = \dfrac{{k\pi }}{2},k \in Z \)
Chọn A
Phương trình \(\tan 3x.\cot 2x = 1\)
\(\Leftrightarrow \tan 3x = \dfrac{1}{{\cot 2x}}\\ \Leftrightarrow \tan 3x = \tan 2x\\ \Leftrightarrow 3x = 2x + k\pi\)
\(\Leftrightarrow x = k\pi\) loại do điều kiện \(x \ne \dfrac{{k\pi }}{2}.\) => Chọn D
Chọn D