K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

Chọn C.

Số cây mỗi hàng (bắt đầu từ hàng thứ nhất) lập thành một cấp số cộng có u1 = 1; d = 1

Giả sử có n hàng cây thì

Ta có 3003 = Sn = nu1 +   n2 + n – 6006 = 0 n = 77.

31 tháng 3 2019

Chọn C

Tổng số cây trồng theo kiểu trên là

27 tháng 8 2019

Chọn B.

Gọi số hàng cây là n.

Gọi số cây lần lượt trên các hàng là 1; 2; 3..; n.

Đây là một cấp số cộng  với số hạng đầu u1 = 1; d = 1 .

Ta có:

Vậy số hàng cần tìm là 77.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Giải sữ người ta đã trồng được n hàng.

Số cây ở mỗi hàng lập thành một cấp số cộng với u1 = 1, công sai d = 1

Tổng số cây ở n hàng cây là:

\({S_n} = \frac{{n\left( {1 + n} \right)}}{2} = \frac{{n\left( {n + 1} \right)}}{2} = 4950\)

⇔ n2 + n – 9 900 = 0

⇔ n = 99 (thỏa mãn) hoặc n = – 100 (không thỏa mãn)

Vậy có 99 hàng cây được trồng theo cách trên.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_1} = 15,\;d = 3\)

\({S_n} = \frac{n}{2}\left[ {2 \times 15 + \left( {n - 1} \right) \times 3} \right] = 870\)

\(\frac{n}{2}\left( {27 + 3n} \right) = 870\)

\(\begin{array}{l} \Leftrightarrow 3{n^2} + 27n - 1740 = 0\\ \Leftrightarrow \left[ \begin{array}{l}n = 20\\n =  - 29(L)\end{array} \right.\end{array}\)

Vậy cần phải thiết kế 20 hàng ghế.

27 tháng 11 2018

Chọn C.

- Ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

2 tháng 1 2018

Đáp án D.

Chọn 2 cây trong 6 cây xoài có C 6 2   =   15  cách.

Chọn 2 cây trong 4 cây mít có C 4 2   =   6  cách.

Chọn 2 cây trong 2 cây xoài có C 2 2   =   1  cách.

Suy ra có tất cả  15 . 6 . 1 = 90 cách chọn 6 cây trồng.

Vậy xác suất cần tính là

NV
22 tháng 12 2020

1.

Xác suất: \(P=\dfrac{2}{6}.\dfrac{2}{4}.\dfrac{2}{2}=\dfrac{1}{6}\)

2.

Xác suất: \(P=\dfrac{C_5^3+C_5^2C_4^1}{C_9^3}=...\)