Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Am-Gm ta được:
\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{\dfrac{ab^2c}{ca}}=2b^2\)
\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{abc^2}{ab}}=2c^2\)
\(\dfrac{ab}{c}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{a^2bc}{bc}}=2a^2\)
\(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a^2+b^2+c^2=1\)
Vậy giá trị nhỏ nhất của \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}=1\)
Áp dụng \(x^2+y^2+z^2\ge xy+yz+zx\)Dấu "=" xảy ra khi x=y=z
\(\Leftrightarrow b^2c^2+c^2a^2+a^2b^2\ge abc\left(a+b+c\right)\)
\(\Leftrightarrow\frac{b^2c^2+c^2a^2+a^2b^2}{abc}\ge a+b+c\)
\(\frac{b.c}{a}+\frac{c.a}{b}+\frac{a.b}{c}\ge a+b+c\)
Dấu "=" xảy ra khi: a=b=c
a,VT= (a+b).(a2-a.b+b2) +(a-b).(a2+a.b+b2)
=a3+b3+a3-b3
=2a3
=VP
=> điều phải chứng minh
b,VP= (a+b).((a-b)2+a.b)
=(a+b)(a2-2a.b+b2+a.b)
=(a+b)(a2-a.b+b2)
=a3+b3
=>điều phải chứng minh
a/ ta có vế trái = a3 + b3 + a3 - b3
= 2a3 = vế phải
b/ ta có vế phải = (a+b).(a2 - 2.a.b + b2 + a.b)
= (a+b).(a2 - ab + b2)
= a3 + b3 = vế trái
c/ ta có vế phải = (a2c2 + 2acbd + b2d2) + (a2d2 - 2adbc + b2c2)
= a2c2 + 2abcd +b2d2 + a2d2 - 2abcd + b2c2
= a2c2 + b2d2 + a2d2 + b2c2
= a2.(c2 + d2) + b2.(c2+ d2)
= (a2 + b2) . (c2 + d2) = vế trái
2) b)
Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)
\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)
\(ab+bc+ac=-60:2=-30\)
a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)
= (x+y)^3
= 1^3 =1
b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac
9^2 = 141 +2(ab+bc+ac)
-60 = 2(ab+bc+ac)
ab+ac+bc=-30
Vậy M=-30
c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)
= x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3
= x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3
= 0
Vậy N=0 .Chúc bạn học tốt.
B
B. A.B+A.C