Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\sqrt{5-x}+\sqrt{x-1}\ge\sqrt{5-x+x-1}=2\)
Ta lại có:
\(-x^2+2x+1=2-\left(x-1\right)^2\le2\)
Từ đây thì ta có:
\(\sqrt{5-x}+\sqrt{x-1}\ge-x^2+2x+1\)
Dấu = xảy ra khi: \(x=1\)
a: \(\Leftrightarrow\sqrt{6}\left(x+1\right)=5\sqrt{6}\)
=>x+1=5
=>x=4
b: =>x^2/10=1,1
=>x^2=11
=>x=căn 11 hoặc x=-căn 11
c: =>(4x+3)/(x+1)=9 và (4x+3)/(x+1)>=0
=>4x+3=9x+9
=>-5x=6
=>x=-6/5
d: =>(2x-3)/(x-1)=4 và x-1>0 và 2x-3>=0
=>2x-3=4x-4 và x>=3/2
=->-2x=-1 và x>=3/2
=>x=1/2 và x>=3/2
=>Ko có x thỏa mãn
e: Đặt căn x=a(a>=0)
PT sẽ là a^2-a-5=0
=>\(\left[{}\begin{matrix}a=\dfrac{1+\sqrt{21}}{2}\left(nhận\right)\\a=\dfrac{1-\sqrt{21}}{2}\left(loại\right)\end{matrix}\right.\)
=>x=(1+căn 21)^2/4=(11+căn 21)/2
Tiếp =))
c)Áp dụng BĐT AM-GM ta có:
\(x\sqrt{y-1}\le\frac{x\left(y-1+1\right)}{2}=\frac{xy}{2}\)
\(2y\sqrt{x-1}\le\frac{2y\left(x-1+1\right)}{2}=\frac{2xy}{2}\)
Cộng theo vế 2 BĐT trên ta có:
\(VT=x\sqrt{y-1}+2y\sqrt{x-1}\le\frac{3xy}{2}=VP\)
Nên xảy ra khi \(x=y\) thay vào giải ra có: x=y=2
d)\(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)
\(pt\Leftrightarrow\sqrt{2x^2+x+1}-2+\sqrt{x^2-x+1}-1=3x-3\)
\(\Leftrightarrow\frac{2x^2+x+1-4}{\sqrt{2x^2+x+1}+2}+\frac{x^2-x+1-1}{\sqrt{x^2-x+1}+1}=3\left(x-1\right)\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(2x+3\right)}{\sqrt{2x^2+x+1}+2}+\frac{x\left(x-1\right)}{\sqrt{x^2-x+1}+1}-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{\left(2x+3\right)}{\sqrt{2x^2+x+1}+2}+\frac{x}{\sqrt{x^2-x+1}+1}-3\right)=0\)
pt trong ngoặc vn nên x=1
Tắm đã làm nốt cho :))
Chả ai giúp t gank =)), mà lần sau đăng ít 1 thôi đăng lắm thế này nhìn nản cmn luôn ấy
a)\(\sqrt{x^2+x-5}+\sqrt{-x^2+x+3}=x^2-3x+4\)
\(pt\Leftrightarrow\sqrt{x^2+x-5}-1+\sqrt{-x^2+x+3}-1=x^2-3x+2\)
\(\Leftrightarrow\frac{x^2+x-5-1}{\sqrt{x^2+x-5}+1}+\frac{-x^2+x+3-1}{\sqrt{-x^2+x+3}+1}=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x+3\right)}{\sqrt{x^2+x-5}+1}+\frac{-\left(x-2\right)\left(x+1\right)}{\sqrt{-x^2+x+3}+1}-\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\frac{\left(x+3\right)}{\sqrt{x^2+x-5}+1}-\frac{\left(x+1\right)}{\sqrt{-x^2+x+3}+1}-\left(x-1\right)\right]=0\)
Pt trong ngoặc <0 nên x=2 là nghiệm
b)\(\frac{x^2}{2}+\frac{x}{2}+1=\sqrt{2x^3-x^2+x+1}\)\
Đk:\(x\ge-\frac{1}{2}\)
\(\Leftrightarrow\frac{x^2}{2}+\frac{x}{2}+1-\left(2x+1\right)=\sqrt{2x^3-x^2+x+1}-\left(2x+1\right)\)
\(\Leftrightarrow\frac{x^2}{2}+\frac{x}{2}+1-\left(2x+1\right)=\frac{2x^3-x^2+x+1-\left(2x+1\right)^2}{\sqrt{2x^3-x^2+x+1}+2x+1}\)
\(\Leftrightarrow\frac{x^2-3x}{2}-\frac{2x^3-5x^2-3x}{\sqrt{2x^3-x^2+x+1}+2x+1}=0\)
\(\Leftrightarrow\frac{x\left(x-3\right)}{2}-\frac{x\left(x-3\right)\left(2x+1\right)}{\sqrt{2x^3-x^2+x+1}+2x+1}=0\)
\(\Leftrightarrow x\left(x-3\right)\left(\frac{1}{2}-\frac{2x+1}{\sqrt{2x^3-x^2+x+1}+2x+1}\right)=0\)
Pt trong ngoặc vô nghiệm nốt nên
\(\orbr{\begin{cases}x=0\\x-3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=3\end{cases}}\)