K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

góc MID=90 độ=góc MEN

=>góc IKEN nội tiếp

=>góc MEI=góc MNK

=>ΔMEI đồng dạng vơi ΔMNK

=>EI*MN=NK*ME

Xét ΔMNP có

ME,PI là đường cao

ME cắt PI tại K

=>K là trực tâm

=>NK vuông góc MP tại Q

=>góc NQP=90 độ

góc NIP=góc NQP=90 độ

=>NIQP nội tiếp

=>góc QNP=góc QIP

IKEN nội tiếp

=>gó QNP=góc EIK=góc QIP

=>IK là phân giác của góc EIQ

8 tháng 9 2018

a, HS tự chứng minh

b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA

c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AKBN nên có ĐPCM

Chứng minh tứ giác EKBH nội tiếp, từ đó có  A K F ^ = A B M ^

d, Lấy P và G lần lượt là trung điểm của AC và OP

Chứng minh I thuộc đường tròn (G, GA)

20 tháng 4 2016

 bạn gì đó giúp mình giải bài toán này vs

a: góc AMB=1/2*sđ cung AB=90 độ

góc FEB+góc FMB=180 độ

=>FMBE nội tiếp

b: Xét ΔKAB có

AM,KE là đường cao

KE cắt AM tại F

=>F là trực tâm

=>BF vuông góc AK

1: góc AMB=1/2*sđ cung AB=90 độ

góc EFB+góc EMB=90+90=180 độ

=>EFBM nội tiếp

2: góc AMC=1/2*sđ cung AC

góc AMD=1/2*sđcung AD

mà sđ cung AC=sđ cung AD

nên góc AMC=góc AMD

=>MA là phân giác của góc CMD

Xet ΔACE và ΔAMC có

góc ACE=góc AMC

góc CAE chung

=>ΔACE đồng dạng với ΔAMC

=>AC/AM=AE/AC

=>AC^2=AM*AE

31 tháng 5 2021

a) Tứ giác MNKC nội tiếp do bốn đỉnh đều thuộc đường tròn đường kính KC.

b) Ta có \(\Delta IMK\sim\Delta INC(g.g)\) nên \(IM.IC=IN.IK\).

c) D là trực tâm của tam giác ICK nên \(\widehat{IEK}=90^o\) , mà IK là đường kính của (O) nên E thuộc (O).

Các tứ giác NDEK, NDMI nội tiếp nên \(\widehat{MND}=\widehat{MID}=90^o-\widehat{ICK}=\widehat{DKE}=\widehat{DNE}\). Suy ra NC là phân giác của góc MNE.

d) Theo phương tích ta có \(DM.DK=DA.DB\). Áp dụng bđt AM - GM:

\(DM.DK=DA.DB\le\dfrac{\left(DA+DB\right)^2}{4}=\dfrac{AB^2}{4}\) không đổi.

Đẳng thức xảy ra khi và chỉ khi DA = DB, tức \(M\equiv I\).

Vậy...

30 tháng 5 2021

giups mk vs