Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi giao của AC và BD là O
sử dụng bất đẳng thức tam giác , ta có:
OA+OB>AB
OB+OC>BC
OC+OD>CD
OD+OA>AD
cộng các về lại ta được: 2(AC+BD)>chu vi tứ giác ABCD
==> cvi ABCD<28
theo nguyên lý đi rích lê có 28 chia cho 4 cạnh thì luôn có 1 cạnh nhỏ hơn 7
Diện tích hình vuông cạnh c là \(S=c^2\)
Tổng diện tích hai hình chữ nhật là \(S_1=2ab\)
Xét tg vuông có \(c^2=a^2+b^2\)
Áp dụng cosi có
\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\frac{a^2+b^2+2ab}{4}\ge ab\Rightarrow a^2+b^2\ge2ab\) Dấu = xảy ra khi \(a=b\)
\(\Rightarrow S\ge S_1\left(dpcm\right)\)
\(S=S_1\) Khi a=b => tg ban đầu phải là tg vuông cân
chia hình vuông thành 25 hình vuông nhỏ có cạnh bằng 1cm ( nghĩa là diện tích bằng 1cm^2)
Theo nguyên lí dirichlet do có 51 điểm và 25 hình vuông
nên tồn tại một hình vuông con chứa ít nhất 3 điểm
Nên 3 điểm đỏ taoh thành 1 tma giác có diện tích nhỏ hơn 1/2 diện tích hình vuông nhỏ là 0,5 cm^2
Vậy ta có điều phải chứng minh
AC và BD là hai đường chéo tứ giác lồi (không tính trường hợp đặt biệt)
Áp dụng BDT tam giác
AB+BC≥AC=8
nên tồn tại AB hoặc BC nhỏ hơn hoặc bằng 4
VẬY tồn tại cạnh nhỏ hơn 7
câu b bạn làm tương tự là ra :>
bo chiu
toán lớp 9 mà anh