Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(P=\frac{x-1}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
Ta thấy \(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}>0\forall x>0,x\ne1\)
b, P=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\frac{2}{2+\sqrt{3}}+2\sqrt{\frac{2}{2+\sqrt{3}}}+1}{\sqrt{\frac{2}{2+\sqrt{3}}}-1}\)
=\(\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\sqrt{\left(\frac{2}{\left(\sqrt{3}+1\right)^2}\right)}+1}{\sqrt{\left(\frac{2}{2+\sqrt{3}}\right)^2}-1}=\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\frac{2}{\sqrt{3}+1}+1}{\frac{2}{\sqrt{3}+1}-1}\)
\(=\frac{12+6\sqrt{3}}{1-3}=-6-3\sqrt{3}\)
a: \(P=\dfrac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}:\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}:\dfrac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}\cdot\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{2x+3\sqrt{x}+1}\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
b: Thay \(x=\dfrac{3-2\sqrt{2}}{4}\) vào P, ta được:
\(P=\left(3\cdot\dfrac{\sqrt{2}-1}{2}-5\right):\left(2\cdot\dfrac{\sqrt{2}-1}{2}+1\right)\)
\(=\dfrac{3\sqrt{2}-3-10}{2}:\sqrt{2}\)
\(=\dfrac{3\sqrt{2}-13}{2\sqrt{2}}=\dfrac{6-13\sqrt{2}}{4}\)
\(Q=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
b.\(Q< 1\)
\(\Leftrightarrow x-\sqrt{x}-2< x-5\sqrt{x}+6\)
\(\Leftrightarrow4\sqrt{x}-8< 0\)
\(\Leftrightarrow0\le x< 4\)
Vay de Q<1 thi \(0\le0< 4\)
Xét P-1 = \(\frac{\sqrt{x}+3}{\sqrt{x}+2}-1\)
P-1 = \(\frac{\sqrt{x}+3-\sqrt{x}-2}{\sqrt{x}+2}=\frac{1}{\sqrt{x}+2}\)
Nhận xét : \(\hept{\begin{cases}1>0\\\sqrt{x}+2>0\end{cases}}vớimoix\)
-> P-1 >0 với mọi x
-> P>1
Thay x=6-2 căn 5 vào P -> P=\(\frac{\sqrt{6-2\sqrt{5}}+3}{\sqrt{6-2\sqrt{5}+2}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}+3}{\sqrt{\left(\sqrt{5}-1\right)^2}+3}\)
=\(\frac{\sqrt{5}-1+3}{\sqrt{5}-1+2}=\frac{\sqrt{5}+3}{\sqrt{5}+1}\)
\(P=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)( ĐKXĐ : \(x\ge0\))
1) Ta có : \(P=\frac{\sqrt{x}+3}{\sqrt{x}+2}=\frac{\sqrt{x}+2+1}{\sqrt{x}+2}=1+\frac{1}{\sqrt{x}+2}\)
Vì \(\frac{1}{\sqrt{x}+2}>0\left(\forall x\ge0\right)\)
Cộng 1 vào mỗi vế => \(1+\frac{1}{\sqrt{x}+2}>1\)
Vậy P > 1
2) Với \(x=6-2\sqrt{5}\)( tmđk )
Khi đó \(P=1+\frac{1}{\sqrt{6-2\sqrt{5}}+2}\)
\(P=1+\frac{1}{\sqrt{5-2\sqrt{5}+1}+2}\)
\(P=1+\frac{1}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}\)
\(P=1+\frac{1}{\left|\sqrt{5}-1\right|+2}\)
\(P=1+\frac{1}{\sqrt{5}-1+2}\)
\(P=1+\frac{1}{\sqrt{5}+1}\)
\(P=\frac{\sqrt{5}+1}{\sqrt{5}+1}+\frac{1}{\sqrt{5}+1}\)
\(P=\frac{\sqrt{5}+1+1}{\sqrt{5}+1}=\frac{\sqrt{5}+2}{\sqrt{5}+1}\)