K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2021

A C B H

Đặt \(AB=a;AC=b\)

Xét \(\Delta ABC\) vuông tại A ta có :

Áp dụng hệ thức lượng trong \(\Delta\) vuông ta được :

\(\Leftrightarrow AH.BC=a.b\)

\(\Leftrightarrow ab=25.12=300\left(1\right)\)

Mặt khác: 

Xét \(\Delta ABC\) vuông tại A, theo định lý Pytago ta được:

\(\Leftrightarrow a^2+b^2=BC^2\)

\(\Leftrightarrow a^2+b^2=625\)

\(\Leftrightarrow\left(a+b\right)^2-2ab=625\)

Thay \(\text{ab=}300\) vào ta được :

\(\Leftrightarrow\left(a+b\right)^2-600=625\)

\(\Leftrightarrow\left(a+b\right)^2=1225\)

\(\Rightarrow a+b=35\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) Giải phương trình ta được: \(\left\{{}\begin{matrix}a=15\\b=20\end{matrix}\right.\)

\(\Rightarrow AB=15;AC=20\)

Xét \(\Delta AHC\) vuông tại H, theo định lý Pytago ta được:

\(HC=\sqrt{AC^2-AH^2}=16\)

 

6 tháng 6 2021

Ta có: \(AB.AC=AH.BC=12.25=300\left(1\right)\)

Lại có: \(AB^2+AC^2=BC^2=625\)

\(\Rightarrow\left(AB+AC\right)^2=AB^2+AC^2+2AB.AC=625+600=1225\)

\(\Rightarrow AB+AC=35\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AB,AC\) là nghiệm của pt \(x^2-35x+300=0\)

\(\Rightarrow\left(x-20\right)\left(x-15\right)=0\) mà \(AB< AC\Rightarrow\left\{{}\begin{matrix}AB=15\\AC=20\end{matrix}\right.\)

Ta có: \(AC^2=CH.CB\Rightarrow CH=\dfrac{AC^2}{CB}=\dfrac{20^2}{25}=16\)

\(\Rightarrow D\)

30 tháng 1 2016

Thể tích được tính bằng diện tích đáy nhân với chiều cao.

Nếu một hình trụ tròn có bán kính đáy là r và chiều cao h thì thể tích được tính bằng:

                     V=\(\pi r^2h\)

30 tháng 1 2016

- đo chiều cao of hình trụ tròn(h)

-      bán kính of đáy hình trụ(r)

- nhân chiều cao(h) vs Pi

-tih bình phương ban kính

-nhan kqua bước 3 và bước 4 để được dap so: V=h*Pi**r^2

27 tháng 12 2021

\(\left\{{}\begin{matrix}2x+3y=-2\\3x-2y=-3\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}6x+9y=-6\\6x-4y=-6\end{matrix}\right.\)⇔ \(\left\{{}\begin{matrix}14y=0\\2x+3y=-2\end{matrix}\right.\)\(\left\{{}\begin{matrix}y=0\\x=-1\end{matrix}\right.\)

14 tháng 2 2022

Phần c làm thế nào vậy ạ, mn giúp em với

23 tháng 5 2021

Phương pháp: Đưa về hằng đẳng thức!

----------------

\(A=2m^2+2m+4=2\left(m^2+m+2\right)=2\left(m^2+2.m.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{7}{4}\right)=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)

Dấu = xảy ra khi m = -1/2

Vậy: MIN A = 7/2 tại x = -1/2

19 tháng 7 2021

\(3-\sqrt{x}\) chưa chắc đã âm

thử x=4=>3-2=1>0

19 tháng 7 2021

Anh ơi cô em bảo âm ạ

NV
15 tháng 7 2021

Đây là 1 bài toán không giải được (người ra đề đã chọn 1 con số ngẫu nhiên dẫn tới kết quả phương trình điểm rơi không thể giải)

Dự đoán điểm rơi tại \(x=a;y=b;z=c\)

\(2\left(x^3+a^3+a^3\right)\ge6a^2x\)

\(2\left(y^3+b^3+b^3\right)\ge6b^2y\)

\(z^3+z^3+c^3\ge3cz^2\) 

Cộng vế:

\(2P+\left(4a^3+4b^3+c^3\right)\ge3\left(2a^2x+2b^2y+cz^2\right)\)

Ta cần tìm a, b, c sao cho:

\(\left\{{}\begin{matrix}2a+4b+3c^2=68\\\dfrac{2a^2}{2}=\dfrac{2b^2}{4}=\dfrac{c}{3}\\\end{matrix}\right.\) \(\Leftrightarrow2a+4.a\sqrt{2}+3.\left(3a^2\right)^2=68\)

\(\Leftrightarrow27a^4+\left(4\sqrt{2}+2\right)a-68=0\)

Đây là 1 pt bậc 4 không thể giải cho nên đây là 1 BĐT không thể giải.

Thông thường khi cho số liệu thì người ra đề phải tính trước các hệ số để ra 1 pt có thể giải chứ ko random kiểu ngớ ngẩn thế này

15 tháng 7 2021

ng đó xứng đáng bị ntn ạ?

23 tháng 8 2021

Dùng \(\alpha\) như ẩn x thôi.

23 tháng 8 2021

Dạ mình cảm ơn 🥰🥰