Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do hơi bận nên mk ghi đáp án nha, ko hiểu đâu ib mk
a) \(3xy^2-2xy+12x=x\left(3y^2-2y+12\right)\)
b) \(x^3-10x^2+25x-16xy^2=x\left(x-4y-5\right)\left(x+4y-5\right)\)
c) \(5y^3-10xy^2+5x^2y-20y=5y\left(y-x-2\right)\left(y-x+2\right)\)
d) \(x^2+2xy+y^2-xz-yz=\left(x+y\right)\left(x+y-z\right)\)
e) \(9x^2+y^2+6xy=\left(3x+y\right)^2\)
f) \(8-12x+6x^2-x^3=\left(2-x\right)^3\)
g) \(125x^3-75x^2+15x-1=\left(5x-1\right)^3\)
h) \(x^2-xz-9y^2+3yz=\left(x-3y\right)\left(x+3y-z\right)\)
dài quá mình làm 3 câu đầu thôi nhé!
a)7x^2-14xy
=7x(x-2y)
b) 3x^2-6xy+3y^2
=3(x^2-2xy+y^2)
c) x^2-4z^2-2xy+y^2
=(x^2-2xy+y^2)-4z^2
=(x-y-2z)(x-y+2z)
=3(x-y)^2
c)
\(10x\left(x-y\right)-6y\left(y-x\right)\)
\(=10x\left(x-y\right)+6x\left(x-y\right)\)
\(=\left(10x+6x\right)\left(x-y\right)\)
\(c,3x^2+5y-3xy-5x\)
\(=\left(3x^2-3xy\right)+\left(5y-5x\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
\(e,27+27x+9x^2=3\left(9+9x+x^2\right)\)
a) x3 -2x2 +5x-4
=x3-x2-x2+x+4x-4
=x2(x-1)-x(x-1)+4(x-1)
=(x2-x+4)(x-1)
b) x3-x2+x+3
=x3+x2-2x2-2x+3x+3
=x2(x+1) -2x(x+1)+3(x+1)
=(x2-2x+3)(x+1)
c) 6x3+x2+x+1
=6x3+ 3x2-2x2-x+2x+1
=6x2(x+\(\frac{1}{2}\)) - 2x(x+\(\frac{1}{2}\)) +2(x+\(\frac{1}{2}\))
=(6x2-2x+2) (x+\(\frac{1}{2}\))
=2( 3x2-x+1) (x+\(\frac{1}{2}\))
d) 4x3 + 6x2+4x+1
= 4x3+2x2+4x2+2x+2x+1
= 4x2(x+\(\frac{1}{2}\))+ 4x(x+\(\frac{1}{2}\))+2(x+\(\frac{1}{2}\))
= 2(2x2 +2x+1)( x+\(\frac{1}{2}\))
e) x6 -9x3+8
\(5y^3-10xy^2+5yx^2-20y=5y\left(y^2-2xy+x^2-4\right)\)
\(=5y\left[\left(x+y\right)^2-4\right]\)
\(=5y\left(x+y-2\right)\left(x+y+2\right)\)
Chúc bạn học tốt.
x2 - x - y2 - y
= (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
***
9x2 + y2 - 16z2 + 6xy
= (3x + y)2 - (4z)2
= (3x + y - 4z)(3x + y + 4z)
***
a3 - a2x - ay + xy
= a2(a - x) - y(a - x)
= (a - x)(a2 - y)
***
2x2 - 8y2 + 3x + 6y
= 2(x2 - 4y2) + 3(x + 2y)
= 2(x - 2y)(x + 2y) + 3(x + 2y)
= (x + 2y)(2x - 4y + 3)
***
xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
= xy(x + y + z) + yz(x + y + z) + xz(x + z)
= y(x + y + z)(x + z) + xz(x + z)
= (x + z)(xy + y2 + yz + xz)
= (x + z)[y(x + y) + z(x + y)]
= (x + z)(x + y)(y + z)
a) Ta có: \(5y^3-10xy^2+5yx^2-20y\)
\(=5y\left(y^2-2xy+x^2-4y\right)\)
b) Ta có: \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\cdot\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
c) Ta có: \(9x^2+y^2+6xy\)
\(=\left(3x\right)^2+2\cdot3x\cdot y+y^2\)
\(=\left(3x+y\right)^2\)
d) Ta có: \(8-12x+6x^2-x^3\)
\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)
\(=\left(2-x\right)^3\)
e) Ta có: \(125x^3-75x^2+15x-1\)
\(=\left(5x\right)^3-3\cdot\left(5x\right)^2\cdot1+3\cdot5x\cdot1^2-1^3\)
\(=\left(5x-1\right)^3\)