Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+2x\right)^2+4\left(x^2+2x\right)+5\left(x^2+2x\right)+20\)
\(=\left(x^2+2x\right)\left(x^2+2x+4\right)+5\left(x^2+2x+4\right)\)
\(=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
\(=\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20\)
\(=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)
(x2+2x)2+9x2+18x+20
=(x2+2x)2+9(x2+2x)+20
Đặt t=x2+2x ta được:
t2+9t+20=t2+4t+5t+20
=t.(t+4)+5.(t+4)
=(t+4)(t+5)
thay t=x2+2x ta được:
(x2+2x+4)(x2+2x+5)
Vậy (x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)
a. \(\left(x^2+2x\right)^2+9x^2+18x+20=x^4+4x^3+13x^2+18x+20\)
\(=x^4+2x^3+2x^3+5x^2+4x^2+4x^2+8x+10x+20\)
\(=x^2\left(x^2+2x+5\right)+2x\left(x^2+2x+5\right)+4\left(x^2+2x+5\right)=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
Lưu ý: có thể dùng phương pháp đồng nhất hệ số dưới dạng \(\left(x^2+ax+5\right)\left(x^2+bx+4\right)\) khi thực xong bước 1
b. \(x^3+2x-3=x^3+x^2-x^2+3x-x-3=x\left(x^2+x+3\right)-\left(x^2+x+3\right)=\left(x-1\right)\left(x^2+x+3\right)\)
c. \(x^2-4xy+4y^2-2x+4y-35=\left(x-2y\right)^2-2\left(x-2y\right)+1-36=\left(x-2y-1\right)^2-6^2\)
\(=\left(x-2y-1-6\right)\left(x-2y-1+6\right)=\left(x-2y-7\right)\left(x-2y+5\right)\)
\(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)^2-5\left(x^2+x\right)+3\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-5\right)+3\left(x^2+x-5\right)\)
\(=\left(x^2+x-5\right)\left(x^2+x+3\right)\)
\(\left(x^2+2x\right)^2+9x^2+18x+20\)
\(=\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20\)
\(=\left(x^2+2x\right)^2+5\left(x^2+2x\right)+4\left(x^2+2x\right)+20\)
\(=\left(x^2+2x\right)\left(x^2+2x+5\right)+4\left(x^2+2x+5\right)\)
\(=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
a) ( 4x+1) (12x-1) (3x+2) (x+1) -4
=(4x+1)(3x+2)(12x-1)(x+1)-4
=(12x2+11x+2)(12x2+11x-1)-4
Đặt t=12x2+11x+2 ta được:
t.(t-3)-4
=t2-3t-4
=t2+t-4t-4
=t.(t+1)-4.(t+1)
=(t+1)(t-4)
thay t=12x2+11x+2 ta được:
(12x2+11x+3)(12x2+11x-2)
Vậy ( 4x+1) (12x-1) (3x+2) (x+1) -4=(12x2+11x+3)(12x2+11x-2)
b) (x2+2x)2+9x2+18x+20
=(x2+2x)2+9.(x2+2x)+20
Đặt y=x2+2x ta được:
y2+9y+20
=y2+4y+5y+20
=y.(y+4)+5.(y+4)
=(y+4)(y+5)
thay y=x2+2x ta được:
(x2+2x+4)(x2+2x+5)
Vậy (x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)
\(\Rightarrow\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+5\cdot\left(x^2+2x\right)+20=\left(x^2+2x\right)\left(x^2+2x+4\right)+5\left(x^2+2x+4\right)=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)