K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

6B, 7A, 8D

20 tháng 12 2020

1, \(45+x^3-5x^2-9x=9\left(5-x\right)+x^2\left(x-5\right)\)

\(=\left(9-x^2\right)\left(x-5\right)=\left(3-x\right)\left(x+3\right)\left(x-5\right)\)

3, \(x^4-5x^2+4\)

Đặt \(x^2=t\left(t\ge0\right)\)ta có : 

\(t^2-5t+4=t^2-t-4t+4=t\left(t-1\right)-4\left(t-1\right)\)

\(=\left(t-4\right)\left(t-1\right)=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

29 tháng 3 2022

`Answer:`

1. `45+x^3-5x^2-9x`

`=x^3+3x^2-8x^2-24x+15x+45x`

`=x^2 .(x+3)-8x.(x+3)+15.(x+3)`

`=(x+3).(x^2-8x+15)`

`=(x+3).(x^2-5x-3x+15)`

`=(x-3).(x-5).(x-3)`

2. `x^4-2x^3-2x^2-2x-3`

`=x^4+x^3-3x^3+x^2+x-3x-3`

`=x^3 .(x+1)-3x^2 .(x+1)+x.(x+1)-3.(x+1)`

`=(x+1).(x^3-3x^2+x-3)`

`=(x+1).[x^3 .(x-3).(x-3)]`

`=(x+1).(x-3).(x^2+1)`

3. `x^4-5x^2+4`

`=x^4-x^2-4x^2+4`

`=x^2 .(x^2-1)-4.(x^2-1)`

`=(x^2-1).(x^2-4)`

`=(x-1).(x+1).(x-2).(x+2)`

4. `x^4+64`

`=x^4+16x^2+64-16x^2`

`=(x^2+8)^2-16x^2`

`=(x^2+8-4x).(x^2+8+4x)`

5. `x^5+x^4+1`

`=x^5+x^4+x^3-x^3+1`

`=x^3 .(x^2+x+1)-(x^3-1)`

`=x^3 .(x^2+x+1)-(x-1).(x^2+x+1)`

`=(x^2+x+1).(x^3-x+1)`

6. `(x^2+2x).(x^2+2x+4)+3`

`=(x^2+2x)^2+4.(x^2+2x)+3`

`=(x^2+2x)^2+x^2+2x+3.(x^2+2x)+3`

`=(x^2+2x+1).(x^2+2x)+3.(x^2+2x+1)`

`=(x^2+2x+1).(x^2+2x+3)`

`=(x+1)^2 .(x^2+2x+3)`

7. `(x^3+4x+8)^2+3x.(x^2+4x+8)+2x^2`

`=x^6+8x^4+16x^3+16x^2+64x+64+3x^3+12x^2+24x+2x^2`

`=x^6+8x^4+19x^3+30x^2+88x+64`

8. `x^3 .(x^2-7)^2-36x`

`=x[x^2.(x^2-7)^2-36]`

`=x[(x^3-7x)^2-6^2]`

`=x.(x^3-7x-6).(x^3-7x+6)`

`=x.(x^3-6x-x-6).(x^3-x-6x+6)`

`=x.[x.(x^2-1)-6.(x+1)].[x.(x^2-1)-6.(x-1)]`

`=x.(x+1).[x.(x-1)-6].(x-1).[x.(x+1)-6]`

`=x.(x+1).(x-1).(x^2-3x+2x-6).(x^2+3x-2x-6)`

`=x.(x+1).(x-1).[x.(x-3)+2.(x-3)].[x.(x+3)-2.(x+3)]`

`=x.(x+1)(x-1).(x-2).(x+2).(x-3).(x+3)`

9. `x^5+x+1`

`=x^5-x^2+x^2+x+1`

`=x^2 .(x^3-1)+(x^2+x+1)`

`=x^2 .(x-1).(x^2+x+1)+(x^2+x+1)`

`=(x^2+x+1).(x^3-x^2+1)`

10. `x^8+x^4+1`

`=[(x^4)^2+2x^4+1]-x^4`

`=(x^4+1)^2-(x^2)^2`

`=(x^4-x^2+1).(x^4+x^2+1)`

`=[(x^4+2x^2+1)-x^2].(x^4-x^2+1)`

`=[(x^2+1)^2-x^2].(x^4-x^2+1)`

`=(x^2-x+1).(x^2+x+1).(x^4-x^2+1)

11. ` x^5-x^4-x^3-x^2-x-2`

`=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2`

`=x^4 .(x-2)+x^3 ,(x-2)+x^2 .(x-2)+x.(x-2)+(x-2)`

`=(x-2).(x^4+x^3+x^2+x+1)`

12. `x^9-x^7-x^6-x^5+x^4+x^3+x^2-1`

`=(x^9-x^7)-(x^6-x^4)-(x^5-x^3)+(x^2-1)`

`=x^7 .(x^2-1)-x^4 .(x^2-1)-x^3 .(x^2-1)+(x^2-1)`

`=(x^2-1).(x^7-x^4-x^3+1)`

`=(x-1)(x+1)(x^3-1)(x^4-1)`

`=(x-1)(x+1)(x^2+x+1)(x-1)(x^2-1)(x^2+1)`

`=(x-1)^2 .(x+1)(x^2+x+1)(x-1)(x+1)(x^2+1)`

`=(x-1)^3 .(x+1)^2 .(x^2+x+1)(x^2+1)`

13. `(x^2-x)^2-12(x^2-x)+24`

`=[ (x^2-x)^2-2.6(x^2-x)+6^2]-12`

`=(x^2-x+6)^2-12`

`=(x^2-x+6-\sqrt{12})(x^2-x+6+\sqrt{12})`

12 tháng 8 2018

\(\left(x+1\right)\left(x+3\right)\left(x+4\right)\left(x+6\right)-7\)

\(=\left\{\left(x+1\right)\left(x+6\right)\right\}.\left\{\left(x+3\right)\left(x+4\right)\right\}-7\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+12\right)-7\) \(\left(1\right)\)

đặt \(x^2+7x+9=a\)

<=> \(\left(1\right)=\left(a-3\right)\left(a+3\right)-7\)

             \(=a^2-16\)

               \(=\left(a-4\right)\left(a+4\right)\)

hay\(\left(1\right)=\) \(\left(x^2+7x+9-4\right)\left(x^2+7x+9+4\right)\)

               \(=\left(x^2+7x+5\right)\left(x^2+7x+13\right)\)

những câu còn lại cũng nhóm đầu với cuối , hai cái giữa với nhau , xong làm tương tự câu trên

học tốt

a) (x + 1)(x + 3)(x + 4)(x + 6) - 7

= (x + 1)(x + 6) (x + 3)(x + 4) - 7

= (x2 + 7x + 6)(x + 7x + 12) - 7

Đặt t = x2 + 7x + 6

Ta có : t(t + 6) - 7 

= t2 + 6t - 7

= t2 + 6t + 9 - 16 

= (t + 3) - 16

= (t + 3 - 4)(t + 3 + 4)

= (t - 1)(t + 7)

Nên : 

Pt = (x2 + 7x + 6 - 1)(x2 + 7x + 6 + 7)

=   (x2 + 7x + 5)(x2 + 7x + 13)

11 tháng 8 2018

a,     \(x\left(x-1\right)\left(x-2\right)\left(x-3\right)-3\)

\(=\left[x\left(x-3\right)\right].\left[\left(x-1\right)\left(x-2\right)\right]-3\)

\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)

Đặt \(x^2-3x=t\Rightarrow x^2-3x+2=t+2\) Ta có: 

      \(x\left(x-1\right)\left(x-2\right)\left(x-3\right)-3\)

\(=t\left(t+2\right)-3\)

\(=t^2+2t-3\)

\(=t^2+3t-t-3\)

\(=t\left(t+3\right)-\left(t+3\right)\)

\(=\left(t-1\right)\left(t+3\right)=\left(x^2-3x-1\right)\left(x^2-3x+3\right)\)

Các ý khác cũng tương tự nhóm số đầu với số cuối và nhóm 2 số còn lại rồi đặt biến phụ.

b, \(\left(x^2+7x+5\right)\left(x^2+7x+13\right)\)

c, \(\left(x^2+8x+10\right)\left(x^2+8x+17\right)\)

d, \(\left(4x^2+8x-3\right)\left(4x^2+8x+6\right)\)

Chúc bạn học tốt.

17 tháng 7 2021

a) x12 + 4 = x12 + 4x6 + 4 - 4x6 = (x6 + 2)2 - (2x3)2 

= (x6 - 2x3 + 2)(x6 + 2x3 + 2)

b) 4x8 + 1 = 4x8 + 4x4  + 1 - 4x4 = (2x4 + 1)2 - (2x2)2 

= (2x4 + 2x2 + 1)(2x4 - 2x2  + 1)

17 tháng 7 2021

c) x7 + x5 - 1 = x7 - x + x5 + x2 - (x2 - x  + 1) = x(x6 - 1) + x2(x3 + 1) - (x2 - x + 1)

= x(x3 - 1)(x3 + 1) + x2(x + 1)(x2 - x + 1) - (x2 - x + 1)

= (x4 - x)(x + 1)(x2 - x + 1) + (x3 + x2)(x2 - x + 1) - (x2 - x + 1)

= (x5 + x4 - x2 - x + x3 + x2 - 1)(x2 -x + 1)

= (x5 + x4 + x3 - x - 1)(x2 - x + 1)

d) x+ x5 + 1 = x7 - x + x5 - x2 + (x2 + x + 1)

= x(x3 - 1)((x3 + 1) + x2(x3 - 1) + (x2 + x + 1)

= (x4 + x)(x  - 1)(x2 + x + 1) + x2(x - 1)((x+ x + 1) + (x2 + x + 1)

= (x2 + x + 1)(x5 - x4 + x- x + x3 - x2 + 1)

= (x2 + x + 1)(x5 - x4 + x3 - x + 1)

6 tháng 7 2017

1) Ta có : 2x+ 3x - 5

= 2x2 - 2x + 5x - 5

= 2x(x - 1) + 5(x - 1)

= (x - 1) (2x + 5) 

3) x2 + x - 6

= x2 + 2x - 3x - 6

= x(x + 2) - (3x + 6)

= x(x + 2) - 3(x + 2)

= (x - 3)(x + 2)