Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/Tự chép lại đb nha :v
=a2 - 9b2+2ab+3a2-8b2-12ab+6ab-3b2-2a2+ab
= 2a2-3ab-20b2
= (2a2+5ab) - (8ab+20b2)
= a(2a+5b) - 4b(2a+5b)
=(2a+5b)(a-4b)
câu 2 tương tự nhé :)
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
1. \(4x^2-17xy+13y^2=4x^2-4xy-13xy+13y^2=4x\left(x-y\right)-13y\left(x-y\right)=\left(x-y\right)\left(4x-13y\right)\)
2. \(2x\left(x-5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
3. \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)
\(\Leftrightarrow\left(2a-3b\right)^2-2\left(2a-3b\right)\left(2b-3a\right)+\left(2b-3a\right)^2=\left(2a-3b-2b+3a\right)^2=\left(5a-5b\right)^2\)
\(=25\left(a-b\right)^2=25\cdot100=2500\)
Mấy câu dễ mình làm trước nhé. Mấy câu khó hơn mình trình bày sau :)
1) 2x2 - 5xy - 3y2 = 2x2 + xy - 6xy - 3y2 = x( 2x + y ) - 3y( 2x + y ) = ( 2x + y )( x - 3y )
2) 7x2 + 3xy - 10y2 = 7x2 - 7xy + 10xy - 10y2 = 7x( x - y ) + 10y( x - y ) = ( x - y )( 7x + 10y )
3) x2 + 5x - 2 = ( x2 + 5x + 25/4 ) - 33/4 = ( x + 5/2 )2 - \(\left(\frac{\sqrt{33}}{2}\right)^2\)= \(\left(x+\frac{5}{2}-\frac{\sqrt{33}}{2}\right)\left(x+\frac{5}{2}+\frac{\sqrt{33}}{2}\right)\)
6) x4 + 324 = ( x4 + 36x2 + 324 ) - 36x2 = ( x2 + 18 )2 - ( 6x )2 = ( x2 - 6x + 18 )( x2 + 6x + 18 )
4) x8 + x7 + 1
= x8 + x7 + x6 - x6 + 1
= x6( x2 + x + 1 ) - ( x6 - 1 )
= x6( x2 + x + 1 ) - ( x3 - 1 )( x3 + 1 )
= x6( x2 + x + 1 ) - ( x - 1 )( x2 + x + 1 )( x3 + 1 )
= ( x2 + x + 1 )( x6 - ( x - 1 )( x3 + 1 ) ]
= ( x2 + x + 1 )( x6 - x4 + x3 - x + 1 )
5) x7 + x5 + 1
= x7 + x6 - x6 + x5 + 1
= x5( x2 + x + 1 ) - ( x6 - 1 )
= x5( x2 + x + 1 ) - ( x3 - 1 )( x3 + 1 )
= x5( x2 + x + 1 ) - ( x - 1 )( x2 + x + 1 )( x3 + 1 )
= ( x2 + x + 1 )[ x5 - ( x - 1 )( x3 + 1 ) ]
= ( x2 + x + 1 )( x5 - x4 + x3 - x + 1 )
7) x5 - 5x3 + 4x
= x5 - x3 - 4x3 + 4x
= x3( x2 - 1 ) - 4x( x2 - 1 )
= ( x2 - 1 )( x3 - 4x )
= ( x - 1 )( x + 1 )x( x2 - 4 )
= x( x - 1 )( x + 1 )( x - 2 )( x + 2 )
8) Xin hàng :)
e) Ta có: \(a^3-a^2-a+1\)
\(=a^2\left(a-1\right)-\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2-1\right)\)
\(=\left(a-1\right)^2\cdot\left(a+1\right)\)
f) Ta có: \(x^3-2xy-x^2y+2y^2\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-2y\right)\)
a) \(\left(a^2+b^2\right)^2-4a^2b^2=\left(a^2+b^2+2ab\right)\left(a^2+b^2-2ab\right)=\left(a+b\right)^2.\left(a-b\right)^2\)
b) \(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
c) \(-x^3+3x^2-3x+1=\left(1-x\right)^3\)
d) Đề sai ko ???
e) \(a^3-a^2-a+1=a^2\left(a-1\right)-\left(a-1\right)=\left(a-1\right)\left(a^2-1\right)=\left(a-1\right)^2\left(a+1\right)\)
f) \(x^3-2xy-x^2y+2y^2=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)
Phân tích đa thức thành nhân tử
a) (1-2x)(1+2x)-x(x+2)(x-2)
\(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x^3\right)+\left(4x-4x^2\right)\)
\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2+6ab^3-b^4\)
\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a-b\right)\left(a+b\right)-8ab\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3+6a^2b+6ab^2-8a^2b-8ab^2\right)\)
\(=\left(a-b\right)\left(a^3-a^2b-ab^2+b^3\right)\)
\(=\left(a-b\right)\left[a^2\left(a-b\right)-b^2\left(a-b\right)\right]\)
\(=\left(a-b\right)^3\left(a+b\right)\)
a,(b-a)^2+(a-b)*(3a-2b)-a^2+b^2
=(a-b)^2+(a-b)*(3a-2b)-(a^2-b^2)
=(a-b)^2+(3a-2b)-(a-b)*(a+b)
=(a-b)*(a-b+3a-2b-a-b)
=(a-b)*(3a-4b)
b, Đặt x^2-2x+4=a=>x^2-2x+3=a-1
x^2-2x+5=a+1
=>phương trình ban đàu sẽ thành:
(a+1)*(a-1)=8
<=>a^2-1=8
<=>a^2=9
<=>a=3 hoặc a=-3
quay về biến cũ ta có
TH1a=3=>x^2-2x+4=3
<=>x^2-2x+1=0
<=>(x-1)^2=0
<=>x-1=0
<=>x=1
TH2 a=-3=>x^2-2x+4=-3
=>(x^2-2x+1)+6=0
<=>(x-1)^2+6=0
do (x-1)^2>=0 với mọi x=>(x-1)^2+6>0 với mọi x
=> phương trình vô nghiệm
Vậy phương trình có 1 nghiệm là x=1