K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

xét \(x\ne0\)ta có :

\(M=\)\(^{x^2\cdot\left(x^2+6x+7-\frac{6}{x}+\frac{1}{x^2}\right)}\)

Đặt \(x-\frac{1}{x}=t\Rightarrow t^2=x^2-2+\frac{1}{x^2}\Leftrightarrow t^2+2=x^2+\frac{1}{x^2}\)

Do đó \(M=x^2\cdot\left(t^2+2+6t+7\right)\Leftrightarrow x^2\cdot\left(t^2+6t+9\right)\)

\(\Leftrightarrow M=x^2\cdot\left(t+3\right)^2\)

30 tháng 10 2018

M=\(x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)

\(=x^2(x^2+3x-1)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)

\(=\left(x^2+3x-1\right)^2\)

9 tháng 12 2017

Ta có:  \(P\left(x\right)=x^4+6x^3+7x^2-6x+1\)

                        \(=x^4+\left(6x^3-2x^2\right)+\left(9x^2-6x+1\right)\)

                        \(=x^4+2x^2\left(3x-1\right)+\left(3x-1\right)^2\)

                        \(=\left(x^2+3x-1\right)^2\)

14 tháng 10 2020

\(x^4+6x^3+7x^2-6x+1\)

\(=x^4+6x^3+9x^2-2x^2-6x+1\)

\(=x^4+\left(6x^3-2x^2\right)+\left(9x^2-6x+1\right)\)

\(=x^4+2x^2\left(3x-1\right)+\left(3x-1\right)^2\)

\(=\left(x^2\right)^2+2x^2\left(3x-1\right)+\left(3x-1\right)^2\)

\(=\left(x^2+3x-1\right)^2\)

 
NV
14 tháng 11 2021

\(=\left(x^2-6x+9\right)-4y^2\)

\(=\left(x-3\right)^2-\left(2y\right)^2\)

\(=\left(x-3-2y\right)\left(x-3+2y\right)\)

8 tháng 10 2022

= ( x^2 - 4y^2 ) + ( 9 - 6x)

= [ x^2 - (2y)^2 ] + 3( 3 - 2x )

= (x - 2y)(x + 2y)+ 3(3 - 2x)

15 tháng 11 2021

\(=\left(x^2-6x+9\right)-2=\left(x-3\right)^2-\sqrt{2^2}=\left(x-3-\sqrt{2}\right)\left(x-3+\sqrt{2}\right)\)

29 tháng 8 2020

Bài làm:

Ta có: \(-6x+5\sqrt{x}+1\)

\(=\left(-6x+6\sqrt{x}\right)-\left(\sqrt{x}-1\right)\)

\(=-6\sqrt{x}\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)\)

\(=\left(-6\sqrt{x}-1\right)\left(\sqrt{x}-1\right)\)

\(=\left(6\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\)

20 tháng 11 2021

Đúng hết mà?