Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g: \(3\left(x-y\right)-5x\left(y-x\right)=\left(x-y\right)\left(5x+3\right)\)
f: \(4x^2\left(x+1\right)+2x^2\left(x+1\right)\)
\(=6x^2\left(x+1\right)\)
f: \(4x^2\left(x+1\right)+2x^2\left(x+1\right)=6x^2\left(x+1\right)\)
g: \(3\left(x-y\right)-5x\left(y-x\right)=\left(x-y\right)\left(5x+3\right)\)
câu f có ( x+1) là nhân tử chung
câu g đổi dấu - thành + thì (y-x) sẽ thành (x-y)
a) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)-4=\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\)
Đặt \(t=x^2+6x+5\)
\(PT=t\left(t+3\right)-4=t^2+3t-4=\left(t-1\right)\left(t+4\right)\)
Thay t: \(PT=\left(x^2+6x+5-1\right)\left(x^2+6x+5+4\right)=\left(x^2+6x+4\right)\left(x^2+6x+9\right)=\left(x^2+6x+4\right)\left(x+3\right)^2\)
b) Đặt \(t=\left(2x+1\right)^2\)
\(PT=t^2-3t+2=\left(t^2-3t+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(t+\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(t+1\right)\left(t+2\right)\)
Thay t:
\(PT=\left[\left(2x+1\right)^2+1\right]\left[\left(2x+1\right)^2+2\right]=\left[4x^2+4x+2\right]\left[4x^2+4x+3\right]=2\left[2x^2+2x+1\right]\left[4x^2+4x+3\right]\)
h) \(y\left(y-x\right)^3-x\left(x-y\right)^2+xy\left(x-y\right)=y\left(y-x\right)^3-x\left(y-x\right)^2-xy\left(y-x\right)=\left(y-x\right)\left[y\left(y-x\right)^2-x-xy\right]=\left(y-x\right)\left[y\left(y^2-2xy+x^2\right)-x-xy\right]=\left(y-x\right)\left(y^3-2xy^2+x^2y-x-xy\right)\)
i) \(10x^2\left(a-2b\right)^2-\left(x^2+2\right)\left(2b-a\right)^2=10x^2\left(a-2b\right)^2-\left(x^2+2\right)\left(a-2b\right)^2=\left(a-2b\right)^2\left(10x^2-x^2-2\right)=\left(a-2b\right)^2\left(9x^2-2\right)\)
x2 - x - y2 - y
=x2 - y2 - x - y
=(x - y)(x + y) - (x + y)
=(x + y)(x - y - 1)
e) \(8\left(x+3y\right)-16x\left(x+3y\right)=\left(x+3y\right)\left(8-16x\right)=8\left(x+3y\right)\left(1-2x\right)\)
f) \(4x^2\left(x+1\right)+2x^2\left(x+1\right)=\left(x+1\right)\left(4x^2+2x^2\right)=6x^2\left(x+1\right)\)
g) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)=\left(3+5x\right)\left(x-y\right)\)
8: \(=\left(x-2y\right)\cdot x\cdot\left(x+3\right)\)
9: \(=\left(5x+2\right)\left(x-3\right)-x\left(x-3\right)\)
\(=\left(x-3\right)\left(4x+2\right)\)
=2(2x+1)(x-3)
3: \(=2\left(x+2\right)\left(25x-15-x\right)\)
\(=2\left(x+2\right)\left(24x-15\right)\)
=6(x+2)(8x-5)
\(\left(x^2+5x\right)^2+10x^2+50x+24\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24\)
\(=\left(x^2+5x\right)^2+4\left(x^2+5x\right)+6\left(x^2+5x\right)+24\)
\(=\left(x^2+5x\right)\left(x^2+5x+4\right)+6\left(x^2+5x+4\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
\(=\left[x^2+x+4x+4\right]\left[x^2+2x+3x+6\right]\)
\(=\left[x\left(x+1\right)+4\left(x+1\right)\right]\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)
Chúc bạn học tốt.
(x2 + 5x)2 + 10x2 + 50x + 24
= ( x2 + 5x)2 + 10 ( x2 + 5x) + 24 (1)
Đặt t = x2 + 5x
(1) <=> t2 + 10t + 24
= t2 + 2. t . 5 + 25 -1
= ( t + 5 )2 -1
= ( t + 5 -1 ) ( t + 5 + 1)
= ( t + 4 ) ( t + 6)
thay t = x2 + 5x vào bt trên, ta có
( x2 + 5x + 4) ( x2 + 5x + 6 )
= ( x2 + x + 4x + 4 ) ( x2 + 2x + 3x + 6)
= ( x + 1 ) ( x + 4 ) ( x + 2 ) ( x + 3)