Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(5x^3+10xy=5x\left(x^2+2y\right)\)
b: \(x^2+14x+49-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7+y\right)\left(x+7-y\right)\)
x4 + 2021x2 - 2020x + 2021
= (x4 + x) + 2021(x2 - x + 1)
= x(x3 + 1) + 2021(x2 - x + 1)
= x(x + 1)(x2 - x + 1) + 2021(x2 - x + 1)
= (x2 + x + 2021)(x2 - x + 1)
a) \(=x^4-x^3-2x^3+2x^2+2x^2-2x-x+1\)
\(=x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x^3-2x^2+2x-1\right)\left(x-1\right)\)
\(=\left(x^3-x^2-x^2+x+x-1\right)\left(x-1\right)\)
\(=\left(x^2-x+1\right)\left(x-1\right)^2\)
c)
\(=6x^4-12x^3+17x^3-34x^2-4x^2+8x-3x+6\)
\(=6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(6x^3+17x^2-4x-3\right)\left(x-2\right)\)
\(=\left(6x^3+18x^2-x^2-3x-x-3\right)\left(x-2\right)\)
\(=\left(6x^2-x-1\right)\left(x+3\right)\left(x-2\right)\)
\(=\left(2x-1\right)\left(3x+1\right)\left(x+3\right)\left(x-2\right)\)
b)
\(=x^4+1011x^2+1011+\left(1010x^2-2020x+1010\right)\)
\(=x^4+1011x^2+1011+1010\left(x^2-2x+1\right)\)
\(=x^4+1011x^2+1011+1010\left(x-1\right)^2\)
CÓ: \(x^4+1010\left(x-1\right)^2+1011x^2\ge0\forall x\)
=> \(x^4+1010\left(x-1\right)^2+1011x^2+1011\ge1011>0\forall x\)
=> ĐA THỨC b > 0 => Ko ph được thành nhân tử.
\(a^2+a+1=0\Rightarrow\left(a+\frac{1}{2}\right)^2+\frac{3}{4}=0\Rightarrow a\in C\)
Vì vậy P không tồn tại
Lớp 8 nên làm như này nhé :))
a) \(-10x^3+2x^2=0\)
\(\Rightarrow-2x^2\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(5x\left(x-2016\right)-x+2016=0\)
\(\Rightarrow5x\left(x-2016\right)-\left(x-2016\right)=0\)
\(\Rightarrow\left(x-2016\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2016\\x=\dfrac{1}{5}\end{matrix}\right.\)
a: Ta có: \(-10x^3+2x^2=0\)
\(\Leftrightarrow-2x^2\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{5}\end{matrix}\right.\)
Bài 3
a) 2x(x - 3) - x + 3 = 0
2x(x - 3) - (x - 3) = 0
(x - 3)(2x - 1) = 0
x - 3 = 0 hoặc 2x - 1 = 0
*) x - 3 = 0
x = 3
*) 2x - 1 = 0
2x = 1
x = 1/2
Vậy x = 1/2; x = 3
b) (3x - 1)(2x + 1) - (x + 1)² = 5x²
6x² + 3x - 2x - 1 - x² - 2x - 1 - 5x² = 0
(6x² - x² - 5x²) + (3x - 2x - 2x) = 0 + 1 + 1
-x = 2
x = -2
Bài 2
a) 5x² + 30y
= 5(x² + 6y)
b) x³ - 2x² - 4xy² + x
= x(x² - 2x - 4y² + 1)
= x[(x² - 2x + 1) - 4y²]
= x[(x - 1)² - (2y)²]
= x(x - 1 - 2y)(x - 1 + 2y)
\(5x\left(x-2021\right)-x+2021=0\)
\(5x\left(x-2021\right)-\left(x-2021\right)=0\)
\(\left(x-2021\right)\left(5x-1\right)=0\)
\(\orbr{\begin{cases}x-2021=0\\5x-1=0\end{cases}\orbr{\begin{cases}x=2021\left(TM\right)\\x=\frac{1}{5}\left(TM\right)\end{cases}}}\)
Trả lời:
\(5x\left(x-2021\right)-x+2021=0\)
\(\Leftrightarrow5x\left(x-2021\right)-\left(x-2021\right)=0\)
\(\Leftrightarrow\left(x-2021\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2021=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2021\\x=\frac{1}{5}\end{cases}}}\)
Vậy x = 2021; x = 1/5 là nghiệm của pt.