Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+4x^2-29x+24\)
\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)\)
\(=\left(x+8\right)\left(x^2-4x+3\right)\)
\(=\left(x+8\right)\left[x\left(x-1\right)-3\left(x-1\right)\right]\)
\(=\left(x+8\right)\left(x-1\right)\left(x-3\right)\)
\(x^3+9x^2+26x+24\)
\(=x^3+3x^2+6x^2+18x+8x+24\)
\(=\left(x^3+3x^2\right)+\left(6x^2+18x\right)+\left(8x+24\right)\)
\(=x^2\left(x+3\right)+6x\left(x+3\right)+8\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+6x+8\right)\)
\(=\left(x+3\right)\left(x^2+2x+4x+8\right)\)
\(=\left(x+3\right)\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\)
\(=\left(x+3\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]\)
\(=\left(x+3\right)\left(x+2\right)\left(x+4\right)\)
\(15^3+29x^2-8x-12=15x^3+30x^2-x^2-2x-6x-12\)
= \(15x^2.\left(x+2\right)-x.\left(x+2\right)-6.\left(x+2\right)\)= \(\left(x+2\right).\left(15x^2-x-6\right)\)
= \(\left(x+2\right).\left(15x^2-10x+9x-6\right)\)= \(\left(x+2\right).\left(3x-2\right).\left(5x+3\right)\)
\(x^3+9x^2+26x+24=x^3+3x^2+6x^2+18x+8x+24\)\(=x.^2\left(x+3\right)+6x.\left(x+3\right)+8.\left(x+3\right)\)\(=\left(x+3\right).\left(x^2+6x+8\right)\)\(\left(x+3\right).\left(x^2+2x+4x+8\right)=\left(x+2\right).\left(x+3\right).\left(x+4\right)\)
Ta có : 15x3 + 29x2 - 8x - 12
= 15x3 + 30x2 - x2 - 8x - 12
= 15x(x + 2) - (8x + 16) - (x2 - 4)
= 15x(x + 2) - 8(x + 2) - (x - 2)(x + 2)
= (x + 2)(15x - 8 - x + 2)
= (x + 2) (14x - 6)
click zô nha >_<
Ta có : 15x3 + 29x2 - 8x - 12
= 15x3 + 30x2 - x2 - 8x - 12
= 15x(x + 2) - (8x + 16) - (x2 - 4)
= 15x(x + 2) - 8(x + 2) - (x - 2)(x + 2)
= (x + 2)(15x - 8 - x + 2)
= (x + 2) (14x - 6)
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(x^3+2x^2-29x-30=\left(x^3+x^2\right)+\left(x^2+x\right)-\left(30x+30\right)\)
\(=x^2\left(x+1\right)+x\left(x+1\right)-30\left(x+1\right)=\left(x+1\right)\left(x^2+x-30\right)\)
\(=\left(x+1\right)\left(x^2+6x-5x-30\right)=\left(x+1\right)\left[x\left(x+6\right)-5\left(x+6\right)\right]=\left(x+1\right)\left(x-5\right)\left(x+6\right)\)