K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

x4 - 9x3 + 28x2 - 36x + 16

Thử với x = 4 ta có :

44 - 9.43 + 28.42 - 36.4 + 16 = 0

Vậy 4 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x - 4

Thực hiện phép chia đa thức cho x - 4 ta được x3 - 5x2 + 8x - 4

Vậy ta phân tích được ( x - 4 )( x3 - 5x2 + 8x - 4 )

Tiếp tục : Thử x = 2 với x3 - 5x2 + 8x - 4

Ta có : 23 - 5.22 + 8.2 - 4 = 0 

Vậy 2 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì x3 - 5x2 + 8x - 4 chia hết cho x - 2

Thực hiện phép chia  x3 - 5x2 + 8x - 4 cho x - 2 ta được x2 - 3x + 2

Vậy ta phân tích được ( x - 4 )( x - 2 )( x2 - 3x + 2 )

x2 - 3x + 2 = x2 - x - 2x + 2 

                  = x( x - 1 ) - 2( x - 1 )

                  = ( x - 2 )( x - 1 )

Vậy : x4 - 9x3 + 28x2 - 36x + 16 = ( x - 4 )( x - 2 )( x - 2 )( x - 1 ) = ( x - 4 )( x - 2 )2( x - 1 )

24 tháng 8 2020

a. \(x^4-9x^3+28x^2-36x+16\)

\(=x^4-8x^3+20x^2-16x-x^3+8x^2-20x+16\)

\(=x\left(x^3-8x^2+20x-16\right)-\left(x^3-8x^2+20x-16\right)\)

\(=\left(x-1\right)\left(x^3-8x^2+20x-16\right)\)

\(=\left(x-1\right)\left(x^3-6x^2+8x-2x^2+12x-16\right)\)

\(=\left(x-1\right)\left[x\left(x^2-6x+8\right)-2\left(x^2-6x+8\right)\right]\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-6x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-2x-4x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)\left[x\left(x-2\right)-4\left(x-2\right)\right]\)

\(=\left(x-1\right)\left(x-2\right)^2\left(x-4\right)\)

Bài 1: 

a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=\left(2x+1\right)\left(3-2x+5\right)\)

\(=\left(2x+1\right)\left(8-2x\right)\)

\(=2\left(4-x\right)\left(2x+1\right)\)

b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)

\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)

\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)

\(=\left(3x-2\right)\left(3x-6\right)\)

\(=3\left(3x-2\right)\left(x-2\right)\)

Bài 2: 

a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)

\(=\left(a-b\right)\left(2a-4b\right)\)

\(=2\left(a-b\right)\left(a-2b\right)\)

f: Ta có: \(x^2-6xy+9y^2+4x-12y\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-3y+4\right)\)

11 tháng 12 2021

b: \(=x\left(x-3\right)\left(x^2+3x+9\right)\)

23 tháng 12 2022

a/ 2x^2 (x – 1) + 4x (1 – x)

= 2x^2(x  – 1) – 4x (x – 1)

= (x – 1)( 2x^2 – 4x)

=2x(x – 1)(x – 2)

 

13 tháng 1

Bài 1:

\(a,x^4+5x^2+9\\=(x^4+6x^2+9)-x^2\\=[(x^2)^2+2\cdot x^2\cdot3+3^2]-x^2\\=(x^2+3)^2-x^2\\=(x^2+3-x)(x^2+3+x)\)

\(b,x^4+3x^2+4\\=(x^4+4x^2+4)-x^2\\=[(x^2)^2+2\cdot x^2\cdot2+2^2]-x^2\\=(x^2+2)^2-x^2\\=(x^2+2-x)(x^2+2+x)\)

\(c,2x^4-x^2-1\\=2x^4-2x^2+x^2-1\\=2x^2(x^2-1)+(x^2-1)\\=(x^2-1)(2x^2+1)\\=(x-1)(x+1)(2x^2+1)\)

13 tháng 1

Bài 2:

\(a,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]=120\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\) (1)

Đặt \(x^2+5x+5=y\), khi đó (1) trở thành:

\(\left(y-1\right)\left(y+1\right)=120\)

\(\Leftrightarrow y^2-1=120\)

\(\Leftrightarrow y^2=121\)

\(\Leftrightarrow\left[{}\begin{matrix}y=11\\y=-11\end{matrix}\right.\)

+, TH1: \(y=11\Leftrightarrow x^2+5x+5=11\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow x^2-x+6x-6=0\)

\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\left(\text{nhận}\right)\)

+, TH2: \(y=-11\Leftrightarrow x^2+5x+5=-11\)

\(\Leftrightarrow x^2+5x+16=0\)

\(\Leftrightarrow\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{25}{4}+16=0\)

\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

Ta thấy: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\forall x\)

Mà \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

\(\Rightarrow\) loại

Vậy \(x\in\left\{1;-6\right\}\).

\(b,\) Đề thiếu vế phải rồi bạn.

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

4 tháng 9 2023

\(a,a^2-2a-4b^2-4b\)

\(=\left(a^2-4b^2\right)-\left(2a+4b\right)\)

\(=\left(a-2b\right)\left(a+2b\right)-2\left(a+2b\right)\)

\(=\left(a+2b\right)\left(a-2b-2\right)\)

\(b,x^3-2x^2+4x-8\)

\(=x^2\left(x-2\right)+4\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+4\right)\)

\(c,x^3+36x-12x^2\)

\(=x^3-6x^2-6x^2+36x\)

\(=x^2\left(x-6\right)-6x\left(x-6\right)\)

\(=\left(x-6\right)\left(x^2-6x\right)\)

\(=x\left(x-6\right)^2\)

\(d,5a^2+3\left(a+b\right)^2-5b^2\)

\(=\left(5a^2-5b^2\right)+3\left(a+b\right)^2\)

\(=5\left(a^2-b^2\right)+3\left(a+b\right)^2\)

\(=5\left(a-b\right)\left(a+b\right)+3\left(a+b\right)^2\)

\(=\left(a+b\right)\left[5\left(a-b\right)+3\left(a+b\right)\right]\)

\(=\left(a+b\right)\left(5a-5b+3a+3b\right)\)

\(=\left(a+b\right)\left(8a-2b\right)\)

\(=2\left(a+b\right)\left(4a-b\right)\)

\(e,x^3-3x^2+3x-1-y^3\)

\(=\left(x^3-3x^2+3x-1\right)-y^3\)

\(=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)

\(=\left(x-y-1\right)\left(x^2-2x+1+xy-y+y^2\right)\)

\(=\left(x-y-1\right)\left(x^2+y^2-xy-y+1\right)\)

#Urushi

4 tháng 9 2023

\(c.\\ x^3+36x-12x^2\\ =x\left(x^2-12x+36\right)\\ =x.\left(x^2-2.x.6+6^2\right)\\ =x.\left(x-6\right)^2\\ ---\\ d.\\ 5a^2+3\left(a+b\right)^2-5b^2\\ =\left(5a^2-5b^2\right)+3\left(a+b\right)^2\\ =5.\left(a^2-b^2\right)+3.\left(a+b\right)\left(a+b\right)\\ =5\left(a+b\right)\left(a-b\right)+3\left(a+b\right)\left(a+b\right)\\ =\left(a+b\right)\left(5a-5b+3a+3b\right)\\ =\left(a+b\right)\left(8a-2b\right)\\ =2\left(a+b\right)\left(4a-b\right)\)

\(e.\\ x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3\\ =\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right).y+y^2\right]\\ =\left(x-y-1\right).\left[\left(x^2-2x+1\right)+y\left(x+y-1\right)\right]\)

22 tháng 10 2023

2:

a: \(x^2-12x+20\)

\(=x^2-2x-10x+20\)

=x(x-2)-10(x-2)

=(x-2)(x-10)

b: \(2x^2-x-15\)

=2x^2-6x+5x-15

=2x(x-3)+5(x-3)

=(x-3)(2x+5)

c: \(x^3-x^2+x-1\)

=x^2(x-1)+(x-1)

=(x-1)(x^2+1)

d: \(2x^3-5x-6\)

\(=2x^3-4x^2+4x^2-8x+3x-6\)

\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)

\(=\left(x-2\right)\left(2x^2+4x+3\right)\)

e: \(4y^4+1\)

\(=4y^4+4y^2+1-4y^2\)

\(=\left(2y^2+1\right)^2-\left(2y\right)^2\)

\(=\left(2y^2+1-2y\right)\left(2y^2+1+2y\right)\)

f; \(x^7+x^5+x^3\)

\(=x^3\left(x^4+x^2+1\right)\)

\(=x^3\left(x^4+2x^2+1-x^2\right)\)

\(=x^3\left[\left(x^2+1\right)^2-x^2\right]\)

\(=x^3\left(x^2-x+1\right)\left(x^2+x+1\right)\)

g: \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x-3\right)\)

\(=\left(x^2+x-3\right)\left(x+2\right)\left(x-1\right)\)

h: \(\left(x^2+2x\right)^2-2\left(x+1\right)^2-1\)

\(=\left(x^2+2x+1-1\right)^2-2\left(x+1\right)^2-1\)

\(=\left[\left(x+1\right)^2-1\right]^2-2\left(x+1\right)^2-1\)

\(=\left(x+1\right)^4-2\left(x+1\right)^2+1-2\left(x+1\right)^2-1\)

\(=\left(x+1\right)^4-4\left(x+1\right)^2\)

\(=\left(x+1\right)^2\left[\left(x+1\right)^2-4\right]\)

\(=\left(x+1\right)^2\left(x+1+2\right)\left(x+1-2\right)\)

\(=\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)\)

i: \(x^2+4xy+4y^2-4\left(x+2y\right)+3\)

\(=\left(x+2y\right)^2-4\left(x+2y\right)+3\)

\(=\left(x+2y\right)^2-\left(x+2y\right)-3\left(x+2y\right)+3\)

\(=\left(x+2y\right)\left(x+2y-1\right)-3\left(x+2y-1\right)\)

\(=\left(x+2y-1\right)\left(x+2y-3\right)\)

j: \(x\cdot\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)

\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)

\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-3\)

\(=\left(x^2-3x+3\right)\left(x^2-3x-1\right)\)

20 tháng 8 2021

a) \(3xy-6xy^2=3xy\left(1-2y\right)\)

b) \(3x^3+6x^2+3x=3x\left(x^2+2x+1\right)=3x\left(x+1\right)^2\)

c) \(x^3-x^2+2\)

d) \(x^2+4x+4-y^2=\left(x^2+4x+4\right)-y^2=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)

e) \(x^3+4x^2+4x=x\left(x^2+4x+4\right)=x\left(x+2\right)^2\)

f) \(x^2+2x+1-9y^2=\left(x+1\right)^2-\left(3y\right)^2=\left(x-3y+1\right)\left(x+3y+1\right)\)

g) \(6x^2-12x=6x\left(x-2\right)\)

h) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)

i) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)

20 tháng 8 2021

k) \(2x^3+2x^2y-4xy^2=2x\left(x^2+xy-2y^2\right)\)

l) \(x^3-7x^2+9x+3x^2-21x+27=x\left(x^2-7x+9\right)+3\left(x^2-7x+9\right)=\left(x+3\right)\left(x^2-7x+9\right)\)

11 tháng 11 2021

2.
a) 4x(x-1)-6x+6
= 4x(x-1)-6(x-1)
= (4x-6)(x-1)
3.
a) 6x2-24x=0
    6x(x-4)=0
TH1: 6x=0         TH2: x-4=0
           x=0                     x=4
Vậy x\(\in\){0;4}

11 tháng 11 2021

2. a. \(4x\left(x-1\right)-6x+6\)

\(=4x\left(x-1\right)-6\left(x-1\right)\)

\(=\left(4x-6\right)\left(x-1\right)\)

3. a. \(6x^2-24x=0\)

\(\Leftrightarrow6x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=0\\x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

4 tháng 10 2021

b) \(16x-5x^2-3=5x\left(3-x\right)-\left(3-x\right)=\left(3-x\right)\left(5x-1\right)\)

c) \(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)

d) \(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)