Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nâng cao phát triển toán 8 tập 1 mình ngại viết nên bạn vào đó xem nhé
Ây za,mik ko bt có đúng ko nhưng mik thử làm nhé.
Đặt \(x^4+y^4+z^4=a;x^2+y^2+z^2=b;x+y+z=c\)
\(\Rightarrow M=2a-b^2-2bc^2+c^4\)
\(M=2a-2b^2+b^2-2bc^2+c^4\)
\(M=2\left(a-b^2\right)+\left(b-c^2\right)^2\)
Mà:
\(a-b^2=-2\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(b-c^2=-2\left(xy+yz+zx\right)\)
Khi đó:
\(M=-4\left(x^2y^2+y^2z^2+z^2x^2\right)+4\left(xy+yz+zx\right)^2\)
\(M=-4x^2y^2-4y^2z^2-4z^2x^2+4x^2y^2++4y^2z^2+4z^2x^2+4z^2x^2+8x^2yz+8xy^2z+8xyz^2\)
\(M=8xyz\left(x+y+z\right)\)
a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz
= xy(X + y + z) + yz(x + y + z) + xz(X + y + z)
= (x + y +z)(xy + yz+ xz)
b) xy(x + y) - yz(y + z) - xz(z - x)
= x2y + xy2 - y2z - yz2 - xz2 + x2z
= x2(y + z) - yz(y + z) + x(y2 - z2)
= x2(y + z) - yz(y + z) + x(y + z)(y - z)
= (y + z)(x2 - yz + xy - xz)
= (y + z)[x(x + y) - z(x + y)]
= (y + z)(x + y)(x - z)
c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)
= x(y - z)(y + z) + yz2 - yx2 + x2z - y2z
= x(y - z)(y + z) - yz(y - z) - x2(y - z)
= (y - z)((xy + xz - yz - x2)
= (y - z)[x(y - x) - z(y - x)]
= (y - z)(x - z)(y -x)
cái này = (x+y)(y+z)(z+x)
cái này mình học nhìn quen rồi còn bạn giải từ chỗ mình vừa viết ở trên rồi giải ngược lại nhé
Câu hỏi của Lee Min Ho - Toán lớp 8 - Học toán với OnlineMath
\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=-y^3-xy^2+x^2y+x^3-z^3-yz^2+y^2z+y^3-x^3-zx^2+z^2x+z^3\)
\(=-xy^2+x^2y-yz^2+y^2z-zx^2+z^2x\)
\(=\left(x-y\right)\left(z-x\right)\left(z-y\right)\)