Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-1)(x-2)(x+4)(x+5)-72=[(x-1)(x+4)][x-2)(x+5)]-72=(x^2+3x-4)(x^2+3x-10)-72
Đặt x^2+3x-4=t nên x^2+3x-10=t-6. Thay vào (*) ta được :
(x-1)(x-2)(x+4)(x+5)=t.(t-6)-72=t^2-6t-72=t^2-6t+9-81=(t-3)^2-9^2=(t-3-9)(t-3+9)=(t-12)(t+6)=(x^2+3x-16)(x^2+3x+2)
M = x9 - x7 + x6 - x5 - x4 + x3 - x2 + 1
= ( x9 - x7 ) + ( x6 - x4 ) - ( x5 - x3 ) - ( x2 - 1 )
= x7( x2 - 1 ) + x4( x2 - 1 ) - x3( x2 - 1 ) - ( x2 - 1 )
= ( x2 - 1 )( x7 + x4 - x3 - 1 )
= ( x - 1 )( x + 1 )[ x4( x3 + 1 ) - ( x3 + 1 ) ]
= ( x - 1 )( x + 1 )( x3 + 1 )( x4 - 1 )
= ( x - 1 )( x + 1 )( x + 1 )( x2 - x + 1 )( x2 - 1 )( x2 + 1 )
= ( x + 1 )2( x - 1 )( x2 - x + 1 )( x - 1 )( x + 1 )( x2 + 1 )
= ( x + 1 )3( x - 1 )2( x2 + 1 )( x2 - x + 1 )
\(4\left(x^2+15x+50\right)\left(x^2+18x+72\right)-3x^2\)
\(=4\left(x+5\right)\left(x+10\right)\left(x+12\right)\left(x+6\right)-3x^2\)
\(=4\left(x^2+17x+60\right)\left(x^2+16x+60\right)-3x^2\)
\(=4\left(x+60\right)^2+132x\left(x+60\right)+1088x^2-3x^2\)
\(=4\left(x+60\right)^2+132x\left(x+60\right)+1085x^2\)
\(=4\left(x+60\right)^2+62x\left(x+60\right)+70x\left(x+60\right)+1085x^2\)
\(=2\left(x+60\right)\left[2\left(x+60\right)+31x\right]+35x\left[2\left(x+60\right)+31x\right]\)
\(=\left(33x+120\right)\left(2x+120+35x\right)\)
\(=3\left(11x+40\right)\left(37x+120\right)\)
Câu 1:
\(\left(x-1\right)\left(x-2\right)\left(x+4\right)\left(x+5\right)-112\)
\(=\left(x-1\right)\left(x+4\right)\left(x-2\right)\left(x+5\right)-112\)
\(=\left(x^2+3x-4\right)\left(x^2+3x-10\right)-112\)
\(=\left(x^2+3x-7\right)^2-3^2-112\)
\(=\left(x^2+3x-7\right)^2-11^2\)
\(=\left(x^2+3x+4\right)\left(x^2+3x-18\right)\)
\(=\left(x^2+3x+4\right)\left(x+6\right)\left(x-3\right)\)
Câu 2:
\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)-72\)
\(=\left(x^2-4\right)\left(x^2-10\right)-2\)
\(=\left(x^2-7\right)^2-3^2-72\)
\(=\left(x^2-7\right)^2-81\)
\(=\left(x^2-16\right)\left(x^2+2\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
(x−1)(x−2)(x+4)(x+5)−112
=(x−1)(x+4)(x−2)(x+5)−112
=(x^2+3x−4)(x^2+3x−10)−112
=(x^2+3x−7)^2−32−112
=(x^2+3x−7)^2−112
=(x^2+3x+4)(x^2+3x−18)
=(x^2+3x+4)(x+6)(x−3)
Câu 2:
(x−2)(x+2)(x^2−10)−72
=(x2−4)(x^2−10)−2
=(x^2−7)^2−32−72
\(a,=4x^3\left(x+1\right)-x\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\\ =x\left(2x-1\right)\left(2x+1\right)\left(x+1\right)\\ b,=\left(a-1\right)^2-\left(b-c\right)^2\\ =\left(a-1-b+c\right)\left(a-1+b-c\right)\\ c,=\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72\\ =\left(x^2-9x+17\right)^2-9-72\\ =\left(x^2-9x+17\right)^2-81=\left(x^2-9x+8\right)\left(x^2-9x+26\right)\\ =\left(x-1\right)\left(x-8\right)\left(x^2-9x+26\right)\)
\(4\left(x^2+15x+50\right)\left(x^2+18x+72\right)+x^2\)
\(=4\left(x^2+5x+10x+50\right)\left(x^2+12x+6x+72\right)+x^2\)
\(=4\left(x+5\right)\left(x+10\right)\left(x+6\right)\left(x+12\right)+x^2\)
\(=4\left(x+6\right)\left(x+10\right)\left(x+5\right)\left(x+12\right)+x^2\)
\(=4\left(x^2+16x+60\right)\left(x^2+17x+60\right)+x^2\)
Đặt \(x^2+16x+60=a\)thay vào ta được :
\(4a\left(a+x\right)+x^2\)
\(=4a^2+4ax+x^2\)
\(=\left(2a+x\right)^2\)
\(=\left(2x^2+32x+120+x\right)^2\)
đề bài đúng thì thừa số thứ 4 là x - 2 chứ