Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^4+6x^3+11x^2+6x+1\)
\(=x^4+9x^2+1+6x^3+6x+2x^2\)
\(=\left(x^2+3x+1\right)^2\)
c: =>(x+2)(x+3)(x-5)(x-6)=180
=>(x^2-3x-10)(x^2-3x-18)=180
=>(x^2-3x)^2-28(x^2-3x)=0
=>x(x-3)(x-7)(x+4)=0
=>\(x\in\left\{0;3;7;-4\right\}\)
c: =>(x-3)(x+2)(2x+1)(3x-1)=0
=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)
\(1.x^4+6x^3+11x^2+6x+1\)
\(=x^4+6x^3+9x^2+2x^2+6x+1\)
\(=x^4+9x^2+1+6x^3+2x^2+6x\)
\(=\left(x^2\right)^2+\left(3x\right)^2+1^2+2.x^2.3x+2.x^2.1+2.3x.1\)
\(=\left(x^2+3x+1\right)^2\)
\(2,6x^4+5x^3-38x^2+5x+6\)
\(=6x^4+6x^3+2x^3-3x^3-36x^2+2x^2-3x^2-x^2-12x+18x-x+6\)
\(=\left(6x^4+2x^3\right)+\left(6x^3+2x^2\right)-\left(3x^3+x^2\right)-\left(36x^2+12x\right)+\left(18x+6\right)-\left(3x^2+x\right)\)
\(=2x^3\left(3x+1\right)+2x^2\left(3x+1\right)-x^2\left(3x+1\right)-12x\left(3x+1\right)+6\left(3x+1\right)-x\left(3x+1\right)\)
\(=\left(3x+1\right)\left(2x^3+2x^2-x^2-12x+6-x\right)\)
\(=\left(3x+1\right)\left[\left(2x^3-x^2\right)+\left(2x^2-x\right)-\left(12x-6\right)\right]\)
\(=\left(3x+1\right)\left[x^2\left(2x-1\right)+x\left(2x-1\right)-6\left(2x-1\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+x-6\right)\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+3x-2x-6\right)\)
\(=\left(3x+1\right)\left(2x-1\right)\left[\left(x^2+3x\right)-\left(2x+6\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left[x\left(x+3\right)-2\left(x+3\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x+3\right)\left(x-2\right)\)
1. \(x^4+6x^3+11x^2+6x+1\)
\(=\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2+2x^2+6x+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
3. \(x^4-7x^3+14x^2-7x+1\)
\(=x^2\left(x^2-7x+14-\dfrac{7}{x}+\dfrac{1}{x^2}\right)\)
\(=x^2\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(7x+\dfrac{7}{x}\right)+14\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-7\left(x+\dfrac{1}{x}\right)+12\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right).\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{1}{4}\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}-\dfrac{7}{2}\right)^2-\dfrac{1}{4}\right]\)
\(=\left(x^2+1-\dfrac{7}{2}x\right)^2-\left(\dfrac{1}{2}x\right)^2\)
\(=\left(x^2-3x+1\right)\left(x^2-4x+1\right)\)
Có thể phân tích thành HĐT tiếp hoặc không.
2: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
3: =x^2(x^2+2x+1)
=x^2(x+1)^2
4: =x^2+6x-x-6
=(x+6)(x-1)
5: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
6: =5x(x+y)-(x+y)
=(x+y)(5x-1)
7: =2x^2+5x-2x-5
=(2x+5)(x-1)
8: =(x^2-1)*(x^2-4)
=(x-1)(x+1)(x-2)(x+2)
9: =x^2(x-5)-9(x-5)
=(x-5)(x-3)(x+3)
\(f,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt \(t=x^2+5x+4\) , ta có
\(t\left(t+2\right)-24\)
\(=t^2+2t-24\)
\(=\left(t^2+2t+1\right)-25\)
\(=\left(t+1\right)^2-5^2\)
\(=\left(t+1-5\right)\left(t+1+5\right)\)
\(=\left(t-4\right)\left(t+6\right)\)
\(=\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(g,\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)
\(=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)
Đặt \(t=x^2-8x+7\), ta có:
\(t\left(t+8\right)-20\)
\(=t^2+8t-20\)
\(=\left(t^2+8t+16\right)-36\)
\(=\left(t+4\right)^2-6^2\)
\(=\left(t+4+6\right)\left(t+4-6\right)\)
\(=\left(t+10\right)\left(t-2\right)\)
\(=\left(x^2-8x+7+10\right)\left(x^2-8x+7-2\right)\)
\(=\left(x^2-8x+17\right)\left(x^2-8x+5\right)\)
2:
a: \(x^2-12x+20\)
\(=x^2-2x-10x+20\)
=x(x-2)-10(x-2)
=(x-2)(x-10)
b: \(2x^2-x-15\)
=2x^2-6x+5x-15
=2x(x-3)+5(x-3)
=(x-3)(2x+5)
c: \(x^3-x^2+x-1\)
=x^2(x-1)+(x-1)
=(x-1)(x^2+1)
d: \(2x^3-5x-6\)
\(=2x^3-4x^2+4x^2-8x+3x-6\)
\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+4x+3\right)\)
e: \(4y^4+1\)
\(=4y^4+4y^2+1-4y^2\)
\(=\left(2y^2+1\right)^2-\left(2y\right)^2\)
\(=\left(2y^2+1-2y\right)\left(2y^2+1+2y\right)\)
f; \(x^7+x^5+x^3\)
\(=x^3\left(x^4+x^2+1\right)\)
\(=x^3\left(x^4+2x^2+1-x^2\right)\)
\(=x^3\left[\left(x^2+1\right)^2-x^2\right]\)
\(=x^3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
g: \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-3\right)\)
\(=\left(x^2+x-3\right)\left(x+2\right)\left(x-1\right)\)
h: \(\left(x^2+2x\right)^2-2\left(x+1\right)^2-1\)
\(=\left(x^2+2x+1-1\right)^2-2\left(x+1\right)^2-1\)
\(=\left[\left(x+1\right)^2-1\right]^2-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-2\left(x+1\right)^2+1-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-4\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left[\left(x+1\right)^2-4\right]\)
\(=\left(x+1\right)^2\left(x+1+2\right)\left(x+1-2\right)\)
\(=\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)\)
i: \(x^2+4xy+4y^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-\left(x+2y\right)-3\left(x+2y\right)+3\)
\(=\left(x+2y\right)\left(x+2y-1\right)-3\left(x+2y-1\right)\)
\(=\left(x+2y-1\right)\left(x+2y-3\right)\)
j: \(x\cdot\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)
\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)
\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-3\)
\(=\left(x^2-3x+3\right)\left(x^2-3x-1\right)\)
help me
dễ mà bạn xin 20 phút làm ra giấy nhé :))