Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2-9xy-4y^2\)
\(=9x\left(x-y\right)-4y^2\)
\(=\left(3\sqrt{x\left(x-y\right)}-2y\right)\left(3\sqrt{x\left(x-y\right)}+2y\right)\)
9x2 - 9xy - 4y2
=( 9x2 - 4y2 ) - 9xy
= ( 3x - 2y ) ( 3x + 2y ) - 9xy
phân tích đa thức thành nhân tử
a, 6x^2 + 7xy + 2y^2
=6x^2+3xy+4xy+2y^2
=3x(x+y)+2y(x+y)
=(3x+2y)(x+y)
b, 9x^2 - 9xy - 4y^2
=9x^2 +3xy-12xy-4y^2
=3x(x+y)-4y(x+y)
=(3x+4y)(x+y)
c, x^2 - y^2 + 10x - 6y + 16=x^2-y^2+6x-6y+4x+16=x(x+6)-y(x+6)+4(x+6)=(x-y+4)(x+6)
Bài làm
a, 6x2 + 7xy + 2y2
= 6x2 + 3xy + 4xy + 2y2
= ( 6x2 + 3xy ) + ( 4xy + 2y2 )
= 3x( 2x + y ) + 2y( 2x + y )
= ( 2x + y )( 3x + 2y )
b, 9x2 - 9xy - 4y2
= 9x2 - 12xy + 3xy - 4y2
= ( 9x2 - 12xy ) + ( 3xy - 4y2 )
= 3x( 3x - 4y ) + y ( 3x - 4y )
= ( 3x + y )( 3x - 4y )
c, x2 - y2 + 10x - 6y + 16
= x2 - y2 - 6x + 6y + 4x + 16
= x( x + 6 ) - y( x + 6 ) + 4( x + 6 )
= ( x - y + 4 )( x + 6 )
# Học tốt #
1: \(6x^2y-9xy^2+3xy\)
\(=3xy\left(2x-3y+1\right)\)
2: \(\left(4-x\right)^2-16\)
\(=\left(4-x-4\right)\left(4-x+4\right)\)
\(=-x\cdot\left(8-x\right)\)
3: \(x^3+9x^2-4x-36\)
\(=x^2\left(x+9\right)-4\left(x+9\right)\)
\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)
1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)
2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)
3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)
a) 8x^2 - 2x - 1
=8x2+2x-4x-1
=2x(4x+1)-(4x+1)
=(2x-1)(4x+1)
b) 6x^2 + 7xy + 2y^2
=4xy+6x2+4y2+3xy
=2x(2y+3x)+y(2y+3x)
=(2y+3x)(y+2x)
c) chịu
d)x^3 + x + 2
Ta thấy :x=-1 là nghiệm của đa thức (đây là dùng pp nhẩm nghiệm nhé)
=>đa thức có 1 hạng tử là x+1
=>(x+1)(x2-x+2) (nếu bn cần cách khác thì nhắn vs mk)
e) x^3 - 2x - 1
lí luận tương tự phần d
=>(x+1)(x2-x-1)
f) x^3 + 3x^2 - 4
lí luận tương tự phần d
=(x-1)(x2+4x+4)
=(x-1)(x+2)2
g) x^2 - 15x + 14
=x2-x-14x+14
=x(x-1)-14(x-1)
=(x-14)(x-1)
a) \(8x^2-2x-1=\left(4x^2-2x\right)+\left(4x^2-1\right)=2x\left(2x-1\right)+\left(2x-1\right)\left(2x+1\right)=\left(2x-1\right)\left(4x+1\right)\)
b) \(6x^2+7xy+2y^2=\left(6x^2+3xy\right)+\left(4xy+2y^2\right)=3x\left(2x+y\right)+2y\left(2x+y\right)=\left(2x+y\right)\left(3x+2y\right)\)
c) \(9x^2-9xy-4y^2=\left(9x^2-y^2\right)-\left(9xy+3y^2\right)=\left(3x-y\right)\left(3x+y\right)-3y\left(3x+y\right)=\left(3x+y\right)\left(3x-4y\right)\)
d) \(x^3+x+2=\left(x^3+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^2-x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^2-x+2\right)\)
e) \(x^3-2x-1=\left(x^3-x\right)-\left(x+1\right)=x\left(x-1\right)\left(x+1\right)-\left(x+1\right)=\left(x+1\right)\left(x^2-x-1\right)\)
f) \(x^3+3x^2-4=\left(x^3-1\right)+\left(3x^2-3\right)=\left(x-1\right)\left(x^2+x+1\right)+3\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x^2+x+1+3x+3\right)=\left(x-1\right)\left(x^2+4x+4\right)=\left(x-1\right)\left(x+2\right)^2\)
g) \(x^2-15x+14=x^2-x+14-14x=x\left(x-1\right)-14\left(x-1\right)=\left(x-1\right)\left(x-14\right)\)
8x2-2x-1=9x2-x2-2x-1=(3x)2-(x2+2x+1)
=(3x)2-(x+1)2=(3x-x-1)(3x+x+1)=(2x-1)(4x+1)
a: \(x^2-y^2+3x+3y\)
\(=\left(x^2-y^2\right)+\left(3x+3y\right)\)
\(=\left(x-y\right)\left(x+y\right)+3\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+3\right)\)
b: Sửa đề: \(x^2-4y^2+4x+4\)
\(=\left(x^2+4x+4\right)-4y^2\)
\(=\left(x+2\right)^2-\left(2y\right)^2\)
\(=\left(x+2+2y\right)\left(x+2-2y\right)\)
1. \(x^3+2x^2-6x-27=\left(x-3\right)\left(x^2+5x+9\right)\)
2. \(9x^2+6x-4y^2-4y=\left(9x^2-4y^2\right)+\left(6x-4y\right)\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)=\left(3x-2y\right)\left(3x+2y+2\right)\)
3. \(12x^3+4x^2-27x-9=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(x^2-\dfrac{9}{4}\right)=\left(x+\dfrac{1}{3}\right)\left(x+\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)\)
1) Ta có: \(x^3+2x^2-6x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
2: Ta có: \(9x^2+6x-4y^2-4y\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(3x+2y+2\right)\)
1 \(=\left(4x^2+4x+1\right)-\left(3y\right)^2\)
\(=\left(2x+1\right)^2-\left(3y\right)^2\)
\(=\left(2x+1-3y\right)\left(2x+1+3y\right)\)
2,\(=\left(x^2+2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x+y\right)^2-\left(z-t\right)^2\)
\(=\left(x+y+z-t\right)\left(x+y-z+t\right)\)
3,\(=9x\left(x-y\right)-7\left(x-y\right)\)
\(=\left(x-y\right)\left(9x-7\right)\)
4\(=3\left(x-y\right)+a\left(x-y\right)\)
\(=\left(x-y\right)\left(3+a\right)\)
\(9x^2-9xy-4y^2\)
\(=9x^2-12xy+3xy-4y^2\)
\(=3x\left(3x-4y\right)+y\left(3x-4y\right)\)
\(=\left(3x-4y\right)\left(3x+y\right)\)